DIGITAL

COMMUNICATION
SYSTEMS

6.02 Fall 2013
Lecture #4

* Linear block codes for channel coding
* Rectangular codes
* Hamming codes

Single Link Communication Model

End-host
Original source devices | Receiving app/user
Digitize Render/display,
(if needed) etc.
Source binary digits
(“message bits”)
Source coding Source decoding
| Bit stream | Bit stream
Channel Mapper Recv I():élcircllrilri}g
+ Sigpdls samples Bits (reducing or
(bit error Xmit |(Votages) + removin
correction) samples | over Demapper hit errorsg)

physical link

Channel Coding

Block code: Block of k message bits at a time is encoded
to n > k code bits, with each of the 2% possible messages

encoded into a unique n-bit codeword

} k-bit message :

2% possibilities

Channel
Coder

|
n-bit codeword |

2k codewords out of

2" possibilities

Channel Transmission

n-bit codeword

2% possibilities

Only 2% out of 2" possibilities are valid, others
are corrected to nearest™ (in HD) valid neighbor

(*provided channel’s probability of a bit flip is p < 0.5)

Binary
Channel

B

Possibly corrupted
n-bit codeword

/

Embedding for Structural Separation

* Encode so that the codewords are far enough from
each other — likely error patterns shouldn’t
transform one codeword to another.

* How much volume to allow around each codeword
depends on the likely level of noise.

Code: A choice of 2% out of
2" nodes; a one-to-one
mapping of all k-bit
message strings to n-bit
codewords.

The code rate is k/n. If
min HD = d, then this is an
(n,k,d) code.

Our intuition for n 2 4 dimensions

a0

Extending this construction to n dimensions,

we get a red hypersphere confined within a blue
hypercube by surrounding touching yellow
unit-radius hyperspheres. Yes? No?

No!!

For n > 10, the red sphere is no longer confined to the hypercube,
because then its radius

vh -1 > 2

In fact, the fraction of its volume inside the cube goes down
exponentially fast with increasing n.

From The Cauchy-Schwarz Master Class by J. Michael Steele
http://www-stat.wharton.upenn.edu/~steele/Publications/Books/CSMC/CSMC_index.html

Minimum Hamming Distance of Code
vs. Detection & Correction Capabilities

If d is the minimum Hamming distance between codewords, we
can:

* detect all patterns of up to t bit errors
ifandonlyif d>t+1

* correct all patterns of up to t bit errors
ifandonlyif d2>2t+1

 detect all patterns of up to t, bit errors
while correcting all patterns of t. (<ty) errors

if and only if d2>t+ty+1

e.g.. d:4’

A Simple Code for Single-Error Detection:
Parity Check

* Add a parity bit P to message of k data bits {D,} to make the total
number of “1” bits even (aka “even parity”). Can compute P as

P=D,+D,+..+D, => addition in GF(2), i.e.,
binary/Boolean arithmetic

* |f the number of “1”s in the received word is odd, there there has

been an error:

011001010011 — original word with parity bit
011000010011 — single-bit error (detected)
011000110011 — 2-biterror (not detected)

 Minimum Hamming distance of parity check code is 2 (proof?)
— Detect all single-bit errors
(detect any odd number of errors, no even number of errors)
— Cannot correct any errors

Without additional structure **-

e Hard to

— Design a good code (for large minimum HD between
codewords, or other criteria)

— Decode (each received n-bit word requires 2¢ comparisons
of the received n-bit word with those in the dictionary of
valid codewords)

How to Construct Codes?

0000000
0101010

1010010
1111000

1100001
1001011

0110011
0011001

1100110
1001100

0110100
0011110

0000111
0101101

1010101
1111111

Want: 4-bit messages with single-error correction (min HD=3)

How to produce a code, i.e., a set of codewords, with this property?

Linear Block Codes

Linear block code: ... codewords obtained via a
linear transformation of the message bits.

Key property: Sum of any two codewords is also a
codeword.

This is necessary and sufficient for a code to be
linear. Hence:

« All - “0” codeword is always in a linear code.

 Min HD: Smallest weight (i.e., number of “1”s)
among nonzero codewords.

Generator Matrix of Linear Block Code

Linear transformation:
c=d.G
c: codeword (n-element row vector)
d: data/message (k-element row vector)
G: generator matrix (k rows, n columns)

cis a linear combination of rows of G, weighted by the
corresponding message bits in d

¢; is a linear combination of the message bits in d, weighted
by the corresponding entries in the j-th column of G

(n,k) Systematic Linear Block Codes

* k-bit blocks
* Add (n-k) generalized parity bits to each block
k n-k
— A ~ AN N

Message bits Parity bits

— _
—

n
Every linear code can be represented by an equivalent systematic
form --- ordering is not significant, direct inclusion of k message

bits in n-bit codeword is.

Corresponds to using invertible transformations on rows, and

permutations on columns, to get
G = [l | A] --- identity matrix in the first k columns

What is A for the simple parity check code?

Example of Generalized Parity Checks:
Rectangular Parity Codes

\

— P, is parity bit
D, P, for row #1

Di | Py | (nk,d)=?

“g P, is parity bit

011
110
10

Parity for each row
and column is correct
=> N0 errors

for column #2

Parity check fails for row
#2 and column #2 = bit
D, is incorrect

Anything else:
= “uncorrectable error”

= = O
O ==
[SE N S

Parity check only fails
for row #2
=> bit P, is incorrect

Rectangular Code Corrects Single Errors

Claim: The min HD of the rectangular code with r rows and ¢
columns is 3. Hence, it is a single error correction (SEC) code.

Coderate=rc/ (rc+r+c).

If we add an overall parity bit P, Ds | D¢ | D7 | Dg | Py

we get a (rctr+c+1, rc, 4) code

Improves error detection but not

correction capability

Proof: Three cases.
(1) Msgs with HD 1 = differ in 1 row and 1 col parity

(2) Msgs with HD 2 = differ in either 2 rows OR 2 cols or both =
HD >4

(3) Msgs with HD 3 or more 2> HD > 4

Generator Matrix for (9,4,4)
Rectangular Code

For the (9,4,4) rectangular code that includes an overall parity
bit:

1 0 0 01 0 1 01
[Dl D, D, D4]° R, 1=[D1 b, D, D, K P B P Ps]
0O 01 0011 01
0O 001 0T1TUO0T11
1xk kxn 1xn
message generator code word
vector matrix vector

The generator matrix, G,,, = Ikxk Akx(n—k)

Some practice

Received codewords DI | D2 |PI
D3 (D4 | P2
S L P3 | P4
I 0

| 1. Decoder action:

| | 2. Decoder action:

0 3. Decoder action:

How Many Parity Bits Do We Really Need?

n-k parity bits can represent 2™k possibilities

* For single-bit error correction, parity bits need to represent
n+1 possibilities:
— No error
— Error in i-th bit out of n-bit codeword

e Son+l<2mkor
n<2nk—1

* Rectangular codes satisfy this with big margin --- inefficient

Hamming Codes

Hamming codes correct single errors with the minimum
number of parity bits:

n=2"nk—-1

(7,4,3)
(15,11,3)
(2m—1,2™-1-m,3)

Such efficiency is not the only, or even most important,
criterion in picking a good code. The ability of a code’s k/n to
approach channel capacity, and various other factors, are
important.

(7,4,3) Hamming Code Example

* Use minimum number of parity bits, each covering a subset of
the data bits.

* No two message bits belong to exactly the same subsets, so a
single-bit error will generate a unique set of parity check
errors.

Suppose we check the
parity and discover that P1
]ngibttilc())r_f and P3 indicate an error?
aka XOR bit D2 must have flipped
What if only P2 indicates
.] an error?
P, =D;+D,+D, “I P2 itself had the error!

P, = D,;+D3+D,
Py = Dy*+Ds+D,

Logic Behind Hamming Code
Construction

* |dea: Use parity bits to cover each axis of the binary vector
space
— That way, all message bits will be covered with a unique combination

of parity bits
o9
Index | | 2 3 4 5 6 7 @@
Binary | 001|010 |OI1 | 100 |101 |110 |I1] o
index “ [)
7,4) |PI P2 DI P3 D2 |D3 |D4
code
P, with binary index 001 covers
P, = D;+D;+D, D, with binary index 011
P; = D,+D3+D, D, with binary index 101

D, with binary index 111

Syndrome Decoding: Idea

* After receiving the possibly corrupted message (use
" to indicate possibly erroneous symbol), compute a
syndrome bit (E,) for each parity bit

E, =D, +D,+D,+P, 0 = D,+D,+D,+P,
E,=D,+D,+D,+P, <{mmm 0=D+D;+D,+P,
E,=D,+ D+ D’ + P, 0 = D,+D,+D,+P,

« If all the E, are zero: no errors
* Otherwise use the particular combination of the E;

to figure out correction EsE»E, | Corrective Action
000 no errors
Index | | 2 3 4 5 6 7 001 p1 has an error, ﬂip to correct
Binary (001 (010 |01l |100 101 110 |11l 010 p» has an error, flip to correct
index 011 dy has an error, flip to correct
(74 |PL P2 DI /P31 D2 D3 D4 100 | ps has an error, flip to correct
code 101 d, has an error, flip to correct
110 d3 has an error, flip to correct
111 d4 has an error, flip to correct

Constraints for more than single-bit errors

Code parity constraint inequality for single-bit errors

1+ n < 2nk

Write-out the inequality for t bit errors

Elementary Combinatorics

* Given n objects, in how many ways can we choose m of
them?

If the ordering of the m selected objects matters, then
n(n-1)(n-2) ... (-m+1) = n!/(n-m)!

If the ordering of the m selected objects doesn’t matter, then
the above expression is too large by a factor m!, so

“ ” _
n choose m” = n -
m

(n—m)!m!

Error-Correcting Codes occur in many
other contexts too

e e.g., ISBN numbers for books,
0-691-12418-3

(Luenberger’s Information Science)

* 1D+ 2D,+3D,+..+10D,,= 0 mod 11

Detects single-digit errors, and transpositions

