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* Convolutional codes
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Error Control Codes for Interplanetary
Space Probes

e Early Mariner probes, 1962-1967 (Mars, Venus) —no ECC

e Later Mariner and Viking probes, 1969-1976 (Mars, Venus) —
linear block codes, e.g.,

(32,6,16) bi-orthogonal

or Hadamard linear code:
the all-O word, the all-1 word,
and the other codewords all
have sixteen 0’s, sixteen 1’s.
The complement of each
codeword is a codeword.




Bi-orthogonal/Hadamard Codes

 e.g., used on Mariner 9 (1971, Mars orbit) to correct picture
transmission errors.
— Data word length: k=6 bits, for 64 grayscale values.

— Usable block length n around 30 bits. Could have done 5-repetition
code, but comparable rate with better error correction from a

[32, 6, 16] Hadamard code.
— Used through the 1980’s.

* The efficient decoding algorithm was an important factor in
the decision to use this code.

 More generally for such codes,
n=27(k-1), d=27(k-2)



Mariner 9 (400 million km trip)

“Spacecraft control was through the central computer and
sequencer which had an onboard memory of 512 words. The
command system was programmed with 86 direct
commands, 4 quantitative commands, and 5 control
commands. Data was stored on a digital reel-to-reel tape
recorder. The 168 meter 8-track tape could store 180 million
bits recorded at 132 kbits/s. Playback could be done at 16, 8,
4, 2, and 1 kbit/s using two tracks at a time.

Telecommunications were via dual S-band 10 W/20 W
transmitters and a single receiver through the high gain
parabolic antenna, the medium gain horn antenna, or the low

gain omnidirectional antenna.”
(NASA)



7329 images, €.g.:




More powerful codes needed for
higher data rates with limited
transmitter power

e Space probe may have a 20W transmitter to cover tens of
billions of kilometers (Voyager 1 is now nearly 19 billion km

from sun!)

— Part of the secret is the antenna --- directs the beam to produce the
same received intensity as an omnidirectional antenna radiating in the
megawatts

— Also “cryogenically-cooled low-noise amplifiers, sophisticated
receivers, and data coding and error-correction schemes. These
systems can collect, detect, lock onto, and amplify a vanishingly small
signal that reaches Earth from the spacecraft, and can extract data
from the signal virtually without errors.” (JPL quote)

* Convolutional codes with Viterbi* decoding — Voyager (1977)
onwards, Cassini, Mars Exploration Rover, ...

* Andrew Viterbi, MIT VI-A, USC professor, Qualcomm cofounder, ...



Saturn and Titan from Cassini,
August 29, 2012




Cassini ECC

e QUESTION: What kind of error-correcting code(s) will be used in the data
transmission of the Cassini orbiter to Earth?

e ANSWER from FAQ on June 3, 1999:

1) A convolutional code, either a (k=7,r=1/2) or (k=15,r=1/6) code. Compared
to an uncoded channel, the k=7,r=1/2 code is 4.5 dB better; and the k=15,1/6
code is 2 dB better than the k=7, r=1/2. The convolutional code typically

provides a BER (bit error rate) of 1 per 200. d=33; all in
8-bit bytes,

not bits!
2) A Reed-Solomon code, which is a block code (255,223), is also used in

combination with the convolutional code (that is, the spacecraft first does the
Reed-Solomon encoding of science data, and then does the convolutional
encoding of Reed-Solomon symbols; we call this arrangement a concatenated
coding scheme). The BER of the concatenated code is 1 per million or better,
which is what the Cassini project needs.

(NASA)



--- but the huge application now is in
terrestrial communication

 Even back in 2005, David Forney™ writes that

“VA** decoders are currently used in about one billion
cellphones, which is probably the largest number in any
application. However, the largest current consumer of VA
processor cycles is probably digital video broadcasting. A recent
estimate at Qualcomm is that approximately 10715 bits per
second are now being decoded by the VA in digital TV sets
around the world, every second of every day.”

*Forney (MIT PhD and MIT professor), “The Viterbi Algorithm: A personal
history”

**Viterbi Algorithm



Convolutional Codes
(Peter Elias, 1955 - MIT EECS faculty)

* Like the block codes discussed earlier, but act on message bits
streaming into the encoder.

* Send parity bits computed from sliding window of message bits

— Unlike block codes, generally don’t send message bits, send only the
parity bits! (i.e., “non-systematic”)

— The code rate of a convolutional code tells you how many parity bits are
sent for each message bit. We’ll mostly be talking about rate 1/r codes,
i.e., r parity bits/message bit.

— Use a sliding window to select which message bits are participating in the
parity calculations. The width of the window (in bits) is called the code’s

constraint length K.
Poln] = X[n] + x[n-1] + x[n-2]

Addition mod 2 p4[n] = x[n] + x[n-2]

(aka XOR) /_\/



Shift-Register View

* One often sees convolutional encoders described with a block diagram like
the following:

p;[n]

The values in the
registers define the
state of the encoder

Poln]

* Message bit in, parity bits out
— Input bits arrive one-at-a-time from the left
— The box computes the parity bits using the incoming bit and the K-1 previous
message bits

— At the end of the bit interval, the saved message bits are shifted right by one,
and the incoming bit moves into the left position.
6.02 Fall 2013 Lecture 6, Slide #12



Example: Transmit message 1011
. S p,[n]

1
L o | o

Poln]
@ 1

Processing x[0]

Processing x[2] Processing x[3]
Poln] =x[n] +x[n-1] + x[n-2] Xmitseq: 1,1, 1,0,0,0,0, 1, ...
(codeword)

6.02 Fall 2013 py[N] = x[n] + x[n-2] Lecture 6, Slide #13



Parity Bit Equations

* A convolutional code generates sequences of parity bits from sequences
of message bits by a convolution operation:

p;|n]= Egi[j]x[n—j] mod 2

* Kis the constraint length of the code

— The larger K is, the more times a particular message bit is used when
calculating parity bits
—> greater redundancy
— better error correction possibilities (usually, though not always)

* g isthe K-element generator for parity bit p..
— Each element g[j] is eitherO or 1

— More than one parity sequence can be generated from the same message; the
simplest choice is to use 2 generator polynomials



Transmitting Parity Bits

We transmit the parity sequences, not the message itself

— As we’ll see, we can recover the message sequences from the parity
sequences

— Each message bit is “spread across” K elements of each parity sequence, so
the parity sequences are better protection against bit errors than the message
sequence itself

If we’re using multiple generators, construct the transmit sequence by
interleaving the bits of the parity sequences:

xmit = po[O], p (O], pol1], pyl11, pol 21, pi [ 2]

Code rate is 1/number_of generators
— 2 generators - rate =%

— Engineering tradeoff: using more generators improves bit-error correction but
decreases rate of the code (the number of message bits/s that can be
transmitted)



Phoning home ing a ' K=15, rate=1
' ‘ 82,950 bps =
(Cassml S turn probe Mars Pathfinder, Mars Rover)




State-Machine View

STARTING STATE
0/00 \n\ / poln] = x[n] + x[n-1] + x[n-2]

p,[n] = x[n] + x[n-2]
(Generators: g, =111, g, = 101)

The state machine is the same for all
K=3 codes. Only the p; labels change
depending on number and values for
the generator polynomials.

Example: K=3, rate- convolutional code
There are 21! states

States labeled with (x[n-1], x[n-2]) value
Arcs labeled with x[n]/p,[n]p,[n]
msg=101100; xmit=1110000101 11



Trellis View at Transmitter

xX[n] 0] 1
Codeword 0O 11

00

01

10

11
x[n-1]x[n-2]

*time



The Parity Stream forms a Linear Code

* Smallest-weight nonzero codeword has a weight that (locally
in time) plays a role analogous to d, the minimum Hamming
distance. It’s called the free distance (fd) of the convolutional
code.

 What s fd for our example?



Encoding & Decoding Convolutional Codes

* Transmitter (aka Encoder)
— Beginning at starting state, processes message bit-by-bit
— For each message bit: makes a state transition, sends p,p,
— End message with K-1 zeros to ensure return to starting state

* Receiver (aka Decoder)

— Doesn’t have direct knowledge of transmitter’s state transitions; only knows
(possibly corrupted) received parity bits, p;

— Must find most likely sequence of transmitter states that could have
generated the received parity bits, p;

— If BER < %, P(more errors) < P(fewer errors)

— When BER < 5, maximum-likelihood message sequence is the one that
generated the codeword (here, sequence of parity bits) with the
smallest Haomming distance from the received codeword (here, parity
bits)

— l.e., find nearest valid codeword closest to the received codeword —
Maximume-likelihood (ML) decoding



In the absence of noise -

Decoding is trivial:

poln] = x[n] + x[n-1] + x[n-2]

p,[n] = x[n] + x[n-2]

Can you see how to recover the input x[.] from the parity bits
pl.]?

In the presence of errors in the parity stream, message bits
will get corrupted at about the same rate as parity bits, with
this simple-minded recovery.



Spot Quiz!

Consider the convolutional code given by
Po[n] = x[n] + x[n-2] + x[Nn-3]
p,[n] = x[n] + x[n-1] + x[n-2]
p,[n] = x[n] + x[n-1] + x[n-2] + x[n-3]

1. Constraint length, K, of thiscode=__

2. Coderate =

3. Coefficients of the generators = , ,

4. No. of states in state machine of thiscode=__



