• Spectral content of signals via the DTFT
Determining $h[n]$ from $H(\Omega)$

$$H(\Omega) = \sum_{m} h[m] e^{-j\Omega m}$$

Multiply both sides by $e^{j\Omega n}$ and integrate over a (contiguous) 2π interval. Only one term survives!

$$\int_{<2\pi>} H(\Omega)e^{j\Omega n} \, d\Omega = \int_{<2\pi>} \sum_{m} h[m] e^{-j\Omega (m-n)} \, d\Omega$$

$$= 2\pi \cdot h[n]$$

$$h[n] = \frac{1}{2\pi} \int_{<2\pi>} H(\Omega)e^{j\Omega n} \, d\Omega$$
Design ideal lowpass filter with cutoff frequency Ω_c and $H(\Omega)=1$ in passband

$$h[n] = \frac{1}{2\pi} \int_{-2\pi}^{2\pi} H(\Omega) e^{j\Omega n} d\Omega$$

$$= \frac{1}{2\pi} \int_{-\Omega_c}^{\Omega_c} H(\Omega) e^{j\Omega n} d\Omega$$

$$= \frac{\sin(\Omega_c n)}{\pi n}, \quad n \neq 0$$

$$= \frac{\Omega_c}{\pi}, \quad n = 0$$

DT “sinc” function (extends to $\pm\infty$ in time, falls off only as $1/n$)
Approximating an ideal lowpass filter

Idea: Delay \(h[n] \) to get causal LTI system (after truncation of tails). Will the result still be a lowpass filter?
Causal approximation to ideal lowpass filter

\[h_C[n] = h[n-300] \]

Determine \(|H_C(\Omega)|\)
Exercise: Frequency response of $h[n-D]$

Given an LTI system with unit sample response $h[n]$ and associated frequency response $H(\Omega)$,

determine the frequency response $H_D(\Omega)$ of an LTI system whose unit sample response is

$$h_D[n] = h[n-D].$$

Answer:

$$H_D(\Omega) = \exp\{-j\Omega D\}.H(\Omega)$$

so:

$$|H_D(\Omega)| = |H(\Omega)|, \quad \text{i.e., magnitude unchanged}$$

$$<H_D(\Omega) = -\Omega D + <H(\Omega), \quad \text{i.e., linear phase term added}$$
Useful Filters
Lowpass filtering (10 Hz cutoff) of blood flow velocity in middle cerebral artery, measured using transcranial Doppler ultrasound.
Frequency Response of Channels

- $h[n]$ for fast channel
- $|H(e^{j\omega})|$ for fast channel

- $h[n]$ for slow channel
- $|H(e^{j\omega})|$ for slow channel

- $h[n]$ for ringing channel
- $|H(e^{j\omega})|$ for ringing channel
Loudspeaker Bandpass Frequency Response

Connection between CT and DT

The continuous-time (CT) signal

\[x(t) = \cos(\omega t) = \cos(2\pi ft) \]

sampled every \(T \) seconds, i.e., at a sampling frequency of \(f_s = 1/T \), gives rise to the discrete-time (DT) signal

\[x[n] = x(nT) = \cos(\omega nT) = \cos(\Omega n) \]

So \(\Omega = \omega T \)

and \(\Omega = \pi \) corresponds to \(\omega = \pi/T \) or \(f = 1/(2T) = f_s/2 \)
A Deeper Reason for Interest in Sinusoidal Inputs

- General inputs $x[.]$ can we written as “sums” of sinusoids

- Each input sinusoidal component is mapped via the frequency response $H(\Omega)$ to its corresponding sinusoidal output component

- Superposition of these output components yields the general response $y[.]$
DT Fourier Transform (DTFT) for Spectral Representation of General $x[n]$

If we can write

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\Omega)e^{j\Omega n} d\Omega$$

where

$$H(\Omega) = \sum_{m} h[m]e^{-j\Omega m}$$

then we can write

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega)e^{j\Omega n} d\Omega$$

where

$$X(\Omega) = \sum_{m} x[m]e^{-j\Omega m}$$

This Fourier representation expresses $x[n]$ as a weighted combination of $e^{j\Omega n}$ for all Ω in $[-\pi, \pi]$. $X(\Omega_o)d\Omega$ indicates the spectral content of $x[n]$ in the frequency interval $[\Omega_o, \Omega_o + d\Omega]$.
$x[n]$ and $X(\Omega)$

Rapidly decaying $x[n]$

Slowly decaying $x[n]$

Oscillatory $x[n]$
Signal $x[n]$ that has its frequency content uniformly distributed in $[-\Omega_c, \Omega_c]$:

$$x[n] = \frac{1}{2\pi} \left< \int_{-\Omega_c}^{\Omega_c} X(\Omega) e^{j\Omega n} d\Omega \right>$$

$$= \frac{1}{2\pi} \int_{-\Omega_c}^{\Omega_c} 1 \cdot e^{j\Omega n} d\Omega$$

$$= \frac{\sin(\Omega_c n)}{\pi n}, \quad n \neq 0$$

$$= \Omega_c / \pi, \quad n = 0$$

DT “sinc” function (extends to $\pm \infty$ in time, falls off only as $1/n$)
Spectral Content of Various Sounds

Ask Prof. Zue** to read this speech spectrogram

http://en.wikipedia.org/wiki/Spectrogram

**Victor was the first person to be able to read these! Get a sense of his achievements at http://www.okawa-foundation.or.jp/en/activities/prize/data/2012_evi.pdf
Dolphin sounds
Instantaneous Heart Rate

![Graph showing instantaneous HR signal over time](image)
Heart-Rate Power Spectral Density $|X(\Omega)|^2$ averaged over many time-windows

- Breathing frequency: 0.18Hz
Relating Output Spectral Content to Input Spectral Content for an LTI System

\[x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega n} \, d\Omega \]

\[y[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\Omega) X(\Omega) e^{j\Omega n} \, d\Omega \]

\[Y(\Omega) = H(\Omega) X(\Omega) \]

Compare with \(y[n] = (h*x)[n] \)

Again, convolution in time has mapped to multiplication in frequency
Magnitude and Angle

\[Y(\Omega) = H(\Omega)X(\Omega) \]

\[|Y(\Omega)| = |H(\Omega)| \cdot |X(\Omega)| \]

and

\[< Y(\Omega) = < H(\Omega) + < X(\Omega) \]
Core of the Story

1. A huge class of DT and CT signals can be written --- using Fourier transforms --- as a weighted sums of sinusoids (ranging from very slow to very fast) or (equivalently, but more compactly) complex exponentials. The sums can be discrete \sum or continuous \int (or both).

2. LTI systems act very simply on sums of sinusoids: superposition of responses to each sinusoid, with the frequency response determining the frequency-dependent scaling of magnitude, shifting in phase.
Spectrum of Digital Transmissions

transmit @ 7 samples/bit

\[|a_k| \text{ (scaled version of DTFT samples)} \]

\[x[n] \text{ synthesized from } a_k \]
Observations on previous figure

• The waveform $x[n]$ cannot vary faster than the step change every 7 samples, so we expect the highest frequency components in the waveform to have a period around 14 samples. (This is rough and qualitative, as $x[n]$ is not sinusoidal.)

• A period of 14 corresponds to a frequency of $2\pi / 14 = \pi / 7$, which is 1/7 of the way from 0 to the positive end of the frequency axis at π (so k approximately 100/7 or 14 in the figure). And that indeed is the neighborhood of where the Fourier coefficients drop off significantly in magnitude.

• There are also lower-frequency components corresponding to the fact that the 1 or 0 level may be held for several bit slots.

• And there are higher-frequency components that result from the transitions between voltage levels being sudden, not gradual.
Effect of Low-Pass Channel

\[|a_k| \text{ cutoff } @ \pm k = 25 \]

\[x[n] \text{ synthesized from } a_k \]

\[|a_k| \text{ cutoff } @ \pm k = 15 \]

\[x[n] \text{ synthesized from } a_k \]
How Low Can We Go?

7 samples/bit → 14 samples/period → \(k = \frac{N}{14} = \frac{196}{14} = 14 \)