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Today’s Plan

MAC Protocols:

I Randomized Access (Aloha)

I Stabilization Algorithms

Packet Switching:

I Multi-Hop Networks

I Delays, Queues, and the Little’s Law
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Competition Between Nodes
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The Aloha Protocol
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Aloha Context

I Alohanet was a satellite-based data network connecting
computers on the Hawaiian islands.

I One frequency was used to send data to the satellite, which
rebroadcast it on a different frequency to be received by all
stations.

I Stations could only hear the satellite, so had to decide
independently when it was their turn to transmit.
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Contention Procotols: Aloha (Simplest Example)

I assume it takes one time slot to send one data packet

I each backlogged node sends a packet with probability p

Decentralization via Randomization!

When pn is not large (where n is the number of backlogged
nodes), we hope that the probability of successful transmission in a
given time slot will be large enough.
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Aloha (Simplest Example): Statistical Analysis

I P(given node success) = p(1− p)n−1

I P(success) = np(1− p)n−1

I utilization: U = P(success) = np(1− p)n−1

maximizing utilization: U(p) = np(1− p)n−1 → maxp∈[0,1]

dU

dp
= n(1− p)n−1 − n(n − 1)(1− p)n−2 = n(1− p)n−2(1− np).

The function U = U(p) has positive derivative when 0 ≤ p < 1/n,
negative derivative when 1/n < p < 1. Hence it achieves
maximum at p = 1/n.
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This Magic Number, 0.37

Umax =
n

n

(
1− 1

n

)n−1
→ 1

e
≈ 0.37 as n→∞
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When p = 0.05 Is Perfect

BTW, n = ?
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When p = 0.05 But Should Be 0.2

BTW, n = ?
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When p = 0.05 But Should Be 0.01

BTW, n = ?
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Stabilization: Selecting The Right p

The Issue:

I setting p = 1/n, where n is the number of backlogged nodes,
maximizes utilization

I in many applications, the number of backlogged nodes is
constantly varying: we do not know n!

I how to dynamically adjust p to achieve maximum utilization?

The Solution:

I detect collisions by listening, or by missing acknowledgement

I each node maintains its own dynamically changing p

I if collision detected (too much traffic), decrease local p

I if success (maybe more traffic possible), increase local p

Stabilization: the process of ensuring operation at, or near, a
desired operating point. Stabilizing Aloha means finding a p that
maximizes utilization as loading changes.
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Stabilization by Exponential Back-Off

Select parameters α, β, pmin, pmax such that

0 < α < 1, β > 1, 0 < pmin < pmax < 1

Decreasing p on collision:

pnext = max{αp, pmin}

Increasing p on success:

pnext = min {βp, pmax}
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When pmin = 0.01, pmax = 0.4, α = 0.4, n = 5
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When pmin = 0.01, pmax = 0.4, α = 0.4, n = 20
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When pmin = 0.01, pmax = 0.4, α = 0.4, n = 100
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Example: Ethernet Media Access Control

I the network is monitored for transmissions (”carrier sense”)

I if an active carrier is detected, transmission is deferred

I if active carrier is not detected, begin frame transmission

I while transmitting, monitor for a collision

I if a collision is detected, transmit ”jam sequence”

I wait a random period of time before re-starting transmission

I on repeated collisions, increase random delay

I on success, clear the collision counter used for backoff

(from http://www.techfest.com/networking/lan/ethernet3.htm)
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Analysis Of Stabilization Algorithms

simulation (e.g., PS7)

Markov Chains (see 6.041)

6.02 Fall 2013 Lecture 19 MAC Protocols and Packet Switching



Multi-Hop Networks

Another take on sharing:
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Circuit Switching

I establish a circuit
between end points
(e.g. by dialing a
phone number)

I communicate using
the established path

I tear down the
connection (e.g.
hang up)
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Packet Switching

I packet headers have destination info
I routers have routing tables – links to destinations info
I packets wait in link queues, dropped if full
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To Survive A Major Attack

WWJC ? Paul Baran in the late 1950s:
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Queues As A Necessary Evil

I manage packets between arrival and departure
I needed to absorb bursts
I add delay by making packets wait until link is available
I shouldnt be too big
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Little’s Law

I Qavg – average queue size

I Davg – average packet delay

I R – throughput rate (packets per unit of time)

Qavg = R · Davg

A true mathematical statement when

I zero queue length at the start and at the end, or

I packet delay counts only between the start and the end, or

I ovbservation time is large compared to the product of
maximal queue size and maximal delay
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Little’s Law: A Proof

I T – length of queue observation (from t = 0 to t = T )
I N –number of packets observed
I Q(t) – packets in the queue at time t
I Dk delay for the kth packet

Total area:

∫ T

0
Q(t)dt =

N∑
k=1

Dk i.e.

Qavg︷ ︸︸ ︷
1

T

∫ T

0
Q(t)dt =

N

T︸︷︷︸
R

Davg︷ ︸︸ ︷
1

N

N∑
k=1

Dk
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