MAC Protocols and Packet Switching

6.02 Fall 2013 Lecture 19

INTRODUCTION TO EECS II

DIGITAL
 COMMUNICATION SUSTEMS

Today's Plan

MAC Protocols:

- Randomized Access (Aloha)
- Stabilization Algorithms

Packet Switching:

- Multi-Hop Networks
- Delays, Queues, and the Little's Law

Competition Between Nodes

The Aloha Protocol

Aloha Context

- Alohanet was a satellite-based data network connecting computers on the Hawaiian islands.
- One frequency was used to send data to the satellite, which rebroadcast it on a different frequency to be received by all stations.
- Stations could only hear the satellite, so had to decide independently when it was their turn to transmit.

Contention Procotols: Aloha (Simplest Example)

- assume it takes one time slot to send one data packet
- each backlogged node sends a packet with probability p

Decentralization via Randomization!

When $p n$ is not large (where n is the number of backlogged nodes), we hope that the probability of successful transmission in a given time slot will be large enough.

Aloha (Simplest Example): Statistical Analysis

- $\mathbf{P}($ given node success $)=p(1-p)^{n-1}$
- $\mathbf{P}($ success $)=n p(1-p)^{n-1}$
- utilization: $U=\mathbf{P}$ (success) $=n p(1-p)^{n-1}$
maximizing utilization: $U(p)=n p(1-p)^{n-1} \rightarrow \max _{p \in[0,1]}$

$$
\frac{d U}{d p}=n(1-p)^{n-1}-n(n-1)(1-p)^{n-2}=n(1-p)^{n-2}(1-n p)
$$

The function $U=U(p)$ has positive derivative when $0 \leq p<1 / n$, negative derivative when $1 / n<p<1$. Hence it achieves maximum at $p=1 / n$.

This Magic Number, 0.37

$$
U_{\max }=\frac{n}{n}\left(1-\frac{1}{n}\right)^{n-1} \rightarrow \frac{1}{e} \approx 0.37 \quad \text { as } \quad n \rightarrow \infty
$$

When $p=0.05$ Is Perfect

BTW, $n=$?

Throughputs vs. time

When $p=0.05$ But Should Be 0.2

BTW, $n=$?

Throughputs vs. time

When $p=0.05$ But Should Be 0.01

BTW, $n=$?

Throughputs vs. time

Stabilization: Selecting The Right p

The Issue:

- setting $p=1 / n$, where n is the number of backlogged nodes, maximizes utilization
- in many applications, the number of backlogged nodes is constantly varying: we do not know n !
- how to dynamically adjust p to achieve maximum utilization?

The Solution:

- detect collisions by listening, or by missing acknowledgement
- each node maintains its own dynamically changing p
- if collision detected (too much traffic), decrease local p
- if success (maybe more traffic possible), increase local p

Stabilization: the process of ensuring operation at, or near, a desired operating point. Stabilizing Aloha means finding a p that maximizes utilization as loading changes.

Stabilization by Exponential Back-Off

Select parameters $\alpha, \beta, p_{\min }, p_{\text {max }}$ such that

$$
0<\alpha<1, \quad \beta>1, \quad 0<p_{\min }<p_{\max }<1
$$

Decreasing p on collision:

$$
p_{\text {next }}=\max \left\{\alpha p, p_{\min }\right\}
$$

Increasing p on success:

$$
p_{\text {next }}=\min \left\{\beta p, p_{\max }\right\}
$$

When $p_{\text {min }}=0.01, p_{\max }=0.4, \alpha=0.4, n=5$

Throughputs vs. time

When $p_{\text {min }}=0.01, p_{\max }=0.4, \alpha=0.4, n=20$

Throughputs vs. time

When $p_{\min }=0.01, p_{\max }=0.4, \alpha=0.4, n=100$

Throughputs vs. time

Example: Ethernet Media Access Control

- the network is monitored for transmissions ("carrier sense")
- if an active carrier is detected, transmission is deferred
- if active carrier is not detected, begin frame transmission
- while transmitting, monitor for a collision
- if a collision is detected, transmit "jam sequence"
- wait a random period of time before re-starting transmission
- on repeated collisions, increase random delay
- on success, clear the collision counter used for backoff
(from http://www.techfest.com/networking/lan/ethernet3.htm)

Analysis Of Stabilization Algorithms

simulation (e.g., PS7)

Markov Chains (see 6.041)

Multi-Hop Networks

Another take on sharing:

Circuit Switching

- establish a circuit between end points (e.g. by dialing a phone number)
- communicate using the established path
- tear down the connection (e.g. hang up)

Packet Switching

- packet headers have destination info
- routers have routing tables - links to destinations info
- packets wait in link queues, dropped if full

To Survive A Major Attack

WWJC ? Paul Baran in the late 1950s:

FIG. I - Centralized, Decentralized and Distributed Networks

Queues As A Necessary Evil

- manage packets between arrival and departure
- needed to absorb bursts
- add delay by making packets wait until link is available
- shouldnt be too big

Little's Law

- $Q_{\text {avg }}$ - average queue size
- $D_{\text {avg }}$ - average packet delay
- R - throughput rate (packets per unit of time)

$$
Q_{\text {avg }}=R \cdot D_{\text {avg }}
$$

A true mathematical statement when

- zero queue length at the start and at the end, or
- packet delay counts only between the start and the end, or
- ovbservation time is large compared to the product of maximal queue size and maximal delay

Little's Law: A Proof

- T - length of queue observation (from $t=0$ to $t=T$)
- N-number of packets observed
- $Q(t)$ - packets in the queue at time t
- D_{k} delay for the k th packet

Total area:

$$
\int_{0}^{T} Q(t) d t=\sum_{k=1}^{N} D_{k} \text { i.e. } \overbrace{\frac{1}{T} \int_{0}^{T} Q(t) d t}^{Q_{\text {avg }}}=\underbrace{\frac{N}{T}}_{R} \overbrace{\frac{1}{N} \sum_{k=1}^{N} D_{k}}^{\text {_vg }}
$$

