
Routing Algorithms

6.02 Fall 2013 Lecture 20

6.02 Fall 2013 Lecture 20 Routing Algorithms



Today’s Plan

Routing Algorithms:

I Addressing,
Forwarding,
Routing

I Distance-Vector
Algorithms

I Link-State
Algorithms

6.02 Fall 2013 Lecture 20 Routing Algorithms



Network Model

Some nodes, some links . . .

6.02 Fall 2013 Lecture 20 Routing Algorithms



Network Model

I node names, i.e. addresses: A, B, C, D

I link names: ->A (from B or D), ->B (from A, D, or C), etc.

6.02 Fall 2013 Lecture 20 Routing Algorithms



Network Model

Link costs: A->B is 100, D->B is 40, etc.

6.02 Fall 2013 Lecture 20 Routing Algorithms



Network Model

Forwarding table: incorrect

6.02 Fall 2013 Lecture 20 Routing Algorithms



Network Model

Forwarding table: correct

6.02 Fall 2013 Lecture 20 Routing Algorithms



Network Model

Routing table: correct forwarding table with total costs

6.02 Fall 2013 Lecture 20 Routing Algorithms



Network Model

Forwarding table: optimal

6.02 Fall 2013 Lecture 20 Routing Algorithms



Routing Algorithms

Nodes

I know (current) neighbor links and costs (HELLO protocol)

I exchange simple info, repeatedly

I aim to to establish optimal routing ASAP

Basic ideas:

I distance-vector algorithms:
maintain/exchange w/neighbors your routing distance tables

I link-state algorithms:
memorize and forward neighbor/cost info for every node

6.02 Fall 2013 Lecture 20 Routing Algorithms



Distance-Vector Algorithms

I each node maintains its own distance vector, i.e. a list of
best available upper bounds for the distance to every known
node on the network, as well as its neighbors’ distance vectors

I distance vector (or just its updates) are sent to all neighbors
regularly

I distance vector updates from neighbors may cause an update
of node’s own distance vector

Bellman-Ford integration:

if node A is linked directly to node B at cost x, and the cost from
node B to node C is not larger than y then the minimal cost from
A to C is not larger than . . .

6.02 Fall 2013 Lecture 20 Routing Algorithms



Distance-Vector: Initialization

6.02 Fall 2013 Lecture 20 Routing Algorithms



Distance-Vector: After First Step

6.02 Fall 2013 Lecture 20 Routing Algorithms



Distance-Vector: After Second Step, or Steady-State

6.02 Fall 2013 Lecture 20 Routing Algorithms



Distance-Vector Algorithms: Formally

cost+(a, c) = min
neighbor b

{cost(a, b) + cost(b, c)}

I convergence guarantee: if network configuration remain
constant, upper bounds of the cost eventually stop increasing
(after a time equal to the maximal number of hops in an
optimal path)

I optimality guarantee: if network configuration remain
constant, upper bounds of the cost eventually beome equal to
the true minimal cost

I correctness guarantee: once the upper bounds are exact,
forwarding to the neighbor with the minimal cost to the
destination is correct and optimal (correctness relies on
assuming that all link costs are positive)

6.02 Fall 2013 Lecture 20 Routing Algorithms



Link-State Algorithms

I nodes send out info about their links to neighbors, with costs
(LSA – link-state advertising)

I nodes forward all LSAs they receive (only once)

I in time equal to the diameter of the network (measured in
hops) all nodes will have all LSAs

I once a node has all LSAs from all nodes, it can optimize
routing on its own (e.g., using the Dijkstra algorithm)

LSA: [node, (neighbor1,cost1), . . . ,(neighborN,costN)]

6.02 Fall 2013 Lecture 20 Routing Algorithms



Dijkstra′s Shortest Path Algorithm

Initialize:

I nodeset: [all nodes] (the set of nodes to be processed)

I costs: costs[me]=0, costs[other]=inf (costs to node,
upper bounds)

I routes: routes[me]=me, routes[other]=None (forwarding
table)

Step (while nodeset isnt empty):

I find u, the node in nodeset with smallest cost[u]

I remove u from nodeset

I for all neighbors v of u:
if cost[v]>cost[u]+cost(u,v):

cost[v]=cost[u]+cost(u,v)

routes[v]=routes[u] if u not me, v if u=me

6.02 Fall 2013 Lecture 20 Routing Algorithms



Dijkstra′s Algorithm: Initialization

6.02 Fall 2013 Lecture 20 Routing Algorithms



Dijkstra′s Algorithm: First Step

6.02 Fall 2013 Lecture 20 Routing Algorithms



Dijkstra′s Algorithm: Second Step

6.02 Fall 2013 Lecture 20 Routing Algorithms



Dijkstra′s Algorithm: Third Step

6.02 Fall 2013 Lecture 20 Routing Algorithms



Dijkstra′s Shortest Path Algorithm: Complexity

Parameters:

I N: number of nodes

I L: number of links

Complexity:

I finding u: N times: O(log N) each time, total O(N log N)

I updating costs: O(L), since each link appears twice

6.02 Fall 2013 Lecture 20 Routing Algorithms


