Routing Algorithms: Dealing With Failures

6.02 Fall 2013 Lecture 21

INTRODUCTION TO EECS II

DIGITAL COMMUNICATION SYSTEMS

・ 同 ト ・ ヨ ト ・ ヨ ト

- Network Dynamics and Failures
- Analysis of Dijkstra Algorithm (Static/Ideal)
- Consequences of Incomplete LSA Flooding
- Dealing With Loopy Forwarding
- Analysis of Distance-Vector Algorithms (Static/Ideal)
- Count-To-Infinity
- Split-Horizon and Path-Vector Routing

Network Dynamics And Failures

Link Failure:

Link Recovery:

Probabilistic Nature of Packet Delivery:

 $\mathbf{P}(\text{delivery}) = p$

(4) (5) (4) (5) (4)

Parameters:

- N: number of nodes
- L: number of links

Complexity:

- finding u (minimal cost node):
 N times: O(log N) each time, total O(N log N)
- updating costs:

O(L), since each link appears twice

ヨット イヨット イヨッ

Shortest Path Routing:

forward to the neighbor with minimal total cost to destination

Distance to destination decreases monotonically at every step.

A B K

Consequences of Incomplete LSA Flooding

Node G does not get the LSA from A and E Node D does not get the LSA from A and B $\,$

Eventually, in the LSA framework, we expect all nodes to have complete info about the network.

In the meanwhile, hop limit eliminates infinite loops:

- Passing every node, a package reduces its hop limit by 1
- A package with hop limit of zero is dropped

向下 イヨト イヨト

$$D^{+}(A, X) = \min_{B \text{ is neignhor}(A)} \{ C(A, B) + D(B, X) \}$$

$$R(A, X) = \arg \min_{B \text{ is neignhor}(A)} \{ C(A, B) + D(B, X) \}$$

(4日) (日)

< ∃⇒

æ

Counting To Infinity

...

C: 2,L1	C: Inf,None (3,L1 is even worse)
C: inf,None	C: 3,L1
C: 4,L1	C: inf,None
C: inf,None	C: 5,L1

...

A ghost of C is lurking in the links...

回 と く ヨ と く ヨ と

æ

The "Split-Horizon" Fix

Do not advertise (advertize ∞) down the forward route

The "Split-Horizon" Fix Does Not Always Work

When Advertisements Are Not In Sync

The "Path-Vector" Fix

- Report not just the first forward, but the whole path
- Do not advertise (advertize ∞) down the path

- The network layer implements the glue that achieves connectivity
- Does addressing, forwarding, and routing
- Forwarding entails a routing table lookup; the table is built using routing protocol
- DV protocol: distributes route computation; each node advertises its best routes to neighbors
- Path-vector: include path, not just cost, in advertisement to avoid count-to-infinity

伺下 イヨト イヨト