
6.082 Fall 2006 1 of 25 Lab #2 

Massachusetts Institute of Technology 
Dept. of Electrical Engineering and Computer Science 

Spring Semester, 2007 
6.082 Introduction to EECS 2 

 
Lab #2: Time-Frequency Analysis 

 
Goal:.................................................................................................................................... 2 
Instructions:......................................................................................................................... 2 
Prelab: ................................................................................................................................. 3 

Understanding Sample Period, Exponential Damping, and the FFT function ............... 3 
Lab Exercises (2pm – 5pm, Wed., February 14, 2007): ..................................................... 9 

Background on Piano Music........................................................................................... 9 
Starting Matlab and creating a Lab2 Directory............................................................. 11 
Time-Domain Analysis of Piano Notes ........................................................................ 11 
Frequency-Domain Analysis of Piano Notes................................................................ 14 
Signal Modeling and Synthesis of Piano Notes............................................................ 15 
An Even Simpler Model for our Synthesized Piano Notes........................................... 18 
A Composition Script for Matlab ................................................................................. 20 
Exercises ....................................................................................................................... 21 

PostLab (Due on Friday, February 16, 2007) ................................................................... 24 
Check-off for Lab 2 .......................................................................................................... 25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.082 Fall 2006 2 of 25 Lab #2 

Goal: 
 
Examination of signals in both the time and frequency domains, and observation of the 
benefits that each domain provides toward understanding the structure of a given signal. 
We will also briefly touch upon signal modeling concepts which are used to approximate 
certain signals through knowledge of their underlying structure. The context of our 
exercises will be examination of a recorded song from a piece of piano music, and an 
attempt to synthesize that music.   
 
Instructions: 
 

1. Complete the Prelab exercises BEFORE Wednesday’s lab. 
2. Complete the activities for Wednesday’s lab (see below) and get checked off by 

one of the TAs before leaving.  Be sure to work in pairs with one computer per 
pair. 

3. Complete the Postlab exercises BEFORE Friday, and turn them in at the 
beginning of lecture on Friday. 
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Prelab: 
 

Understanding Sample Period, Exponential Damping, and the FFT function 
 
Before we enter Lab 2 and examine signals created by a piano, we need to provide some 
additional background that will help us in our future analysis. 
 

• To understand the concept of sample period, type the following commands in 
Matlab (note that you need not include the statements following the % symbols 
since they are simply comments): 

 
Fs = 22050;                       % sample frequency in Hz 
Ts = 1/Fs;                          % sample period in seconds 
t = (1:1000)*Ts;                % time vector with 1001 samples 
y = 0.5*sin(2*pi*330*t);   % sine wave with amplitude 0.5    
                                            %               and frequency 330 Hz  
plot(t,y); 
 

o You should see a Figure 1 plot that appears as below.  Note that the 
amplitude of the sine wave is easily seen to be 0.5, but that its frequency 
of 330 Hz requires more work to verify.  To do so, note that the period of 
the sine wave should be 1/330 Hz = 0.003 seconds.  To verify that the sine 
wave period is indeed that value, type axis([0 0.003 -1 1]) in Matlab and 
observe the resulting plot. 

 

 
 

o In the above example, we see that sample period corresponds to the 
increment between each time sample in the vector t that we created.  To 
better understand this concept, consider the following two examples: 

 t = 1:1000 creates a vector [1 2 3 ….. 1000] 
 t = (1:1000)*Ts creates a vector [1*Ts 2*Ts 3*Ts …. 1000*Ts] 
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o We also see that sample frequency simply corresponds to the inverse of 
sample period.  Note that the sine wave frequency and period are 
different than the sample frequency and period.  In the case where the 
sample frequency is much higher than the sine wave frequency (or, 
equivalently, where the sample period is much lower than the sine wave 
period), the sampled waveform resembles a continuous-time waveform. 
We will provide more details of sampling later in the class. 

 
• To understand the concept of exponential damping, type the following 

commands in Matlab: 
 

tau = 7e-3; 
r = exp(-t/tau); 
plot(t,r); 

 
o You should see a plot as shown below, which displays the decaying 

exponential function as a function of time.  The rate of decay is set by the 
time constant of the exponential, which corresponds to variable tau in the 
above example.   Try different values of tau in the above example to see 
how it influences the decay time of the exponential. 

 

 
 

o One important point – the decaying exponential that you are seeing above 
is not the same as the complex exponentials that we have been discussing 
in lecture. 

o While the above plot shows a decaying exponential, the expression 
exponential damping is typically associated with a non-exponential 
waveform whose amplitude decays in exponential fashion.  A very 
relevant example is exponential damping of a sine wave, as illustrated by 
executing the following Matlab commands (with tau = 7e-3): 

 
y_damped = sin(2*pi*330*t).*exp(-t/tau); 
plot(t,y_damped); 
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o After execution of the above command, you should see the plot below.  Be 
sure to note the use of the two characters “.*” in the above example – the 
“.*” character combination is used when multipling two vectors on an 
element-by-element basis.  Try changing tau to a few different values to 
see the resulting waveform changes. 

 

 
 

• To see the frequency domain content of a given signal in Matlab, we typically use 
the function fft (which stands for Fast Fourier Transform).  Based on the Fourier 
analysis discussed in lecture, the fft operates on non-periodic signals which are 
sampled in time and have finite length.  The output of the fft is very similar to 
what we would expect from doing the Fourier Series of a periodic signal – we 
essentially obtain a and b coefficients which can be examined to see the 
frequency content of a given signal. 

 
o In Matlab, type 
 
edit fft_example.m 

 
o Be sure to answer yes when prompted for creation of a new file. 
o Within the new edit window, type in the following commands (note that 

there is no need to type the comments following the % symbols): 
 
t = 0:19; 
f = -10:9;   % use index of frequencies for easy viewing in stem plot 
y = sin(2*pi*1/20*t);   % sine wave with frequency 1/20 
yf = fft(y);  
a = real(yf);     % a coefficients of transform 
b = imag(yf);   % b coefficients of transform 

 
subplot(221);   % left, upper corner of 2x2 plot 
stem(f,fftshift(a));  % make stick figure plot, fftshift used to 
                                 % properly show positive and negative frequencies 
title(‘a coeff’); 
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subplot(222);   % right, upper corner of 2x2 plot 
stem(f,fftshift(b)); 
title(‘b coeff’); 
 
subplot(223);  % left, lower corner of 2x2 plot 
stem(f,fftshift(abs(yf)));  % magnitude of fft coefficients ( = sqrt(a2 + b2) ) 
title(‘magnitude’); 

 
o You should now see a plot as shown below.  Notice that for the sine wave 

signal, the a coefficients are all essentially zero (notice the scale is 1e-15), 
whereas the b coefficients have non-zero values only for index values of 
+1 and -1 (which correspond to frequencies of +1/20 and -1/20).  Notice 
that the magnitude plot is even symmetric about zero frequency, and the 
phase plot is odd symmetric about zero frequency.  

 

 
 

• To better see when the a or b coefficients are essentially zero, add the following 
axis commands (which are in bold) to the above script.  Upon re-running the 
script, you should see the plot shown below. 

 …. 
 title(‘a coeff’); 
 axis([-10 10 -10 10]); 
  …. 
 title(‘b coeff’); 
 axis([-10 10 -10 10]); 
      ….. 
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• Now change y in the above script from a sine to a cosine waveform and then re-
run the script to the plot shown below: 
….. 
y = cos(2*pi*1/20*t);   % cosine wave with frequency 1/20 
….. 
 

 
 

o The above plot reveals that the b coefficients are now zero. 
 

• Finally, double the frequency of the cosine waveform and re-run the script to get 
the plot shown below: 
….. 
y = cos(2*pi*1/10*t);   % cosine wave with frequency 1/10 
….. 
 



6.082 Fall 2006 8 of 25 Lab #2 

 
 

o The above plot shows that the frequency content of the signal has shifted to 
index values of +2 and -2 (which correspond to frequencies +2/20 and -2/20). 

 
• As we complete our exercise on the fft function, we mention a few things that will 

useful to know in the remaining exercises in this lab: 
o Notice that we did not bother plotting the phase of the fft coefficients in the 

above examples.   For many applications, the magnitude of the fft is of 
primary importance, and, in such cases, we rarely look at the phase or even 
the a and b coefficients themselves. 

o Since the magnitude is always even symmetric, we often just focus on the 
positive frequency range.  
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Lab Exercises (2pm – 5pm, Wed., February 14, 2007): 
 

Background on Piano Music 
 
Pressing a piano’s key causes a hammer to strike a set of taut strings; the hammer then 
falls away from the strings so as not to dampen their vibration.  The vibration of the 
strings produces the sound that we hear and recognize as the strike of a piano’s key.  The 
quality of the sound we hear is determined by the amplitude and frequency of the string’s 
vibration, which in turn are related to the length, diameter, tension and density of the 
string. 

 
 
Most pianos have 88 keys with the leftmost key producing the lowest frequency sound.  
The keys on a piano are arranged in a repeating pattern of 12 keys (7 white and 5 black) 
as shown below.   
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Each of the 12 keys in a pattern corresponds to a note in the twelve-note Western Music 
Scale.  The seven white keys correspond to the seven natural notes ( C, D, E, F, G, A, B); 
and the remaining 5 black keys correspond to the sharp and flat notes (C#/Db , D#/Eb,  
F#/Gb, G#/Ab, A#/Bb). In this lab, we will focus only on the seven natural notes. 
 

A note that is one octave above another has a frequency that is 2 times the frequency of 
the lower note.  To distinguish between the different octaves, we often add a subscript to 
each note to indicate the octave it belongs to.  For example, the leftmost C1 note on a 
piano has a frequency of 32.7 Hz, whereas the C2 note is one octave above C1 and has a 
frequency of 65.4 Hz.   The figure below lists the frequencies of the keys that will be of 
interest in this lab. 
 

Increasing Frequency 

One Octave: 12 Notes 
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C2 D2 G2F2E2 A2 B2
C3 D3 G3F3E3 A3 B3

C4 D4 G4F4E4 A4 B4
C5 D5 G5F5E5 A5 B5

C2 :   65.41 Hz 

D2 :   73.42 Hz 

E2 :   82.41 Hz 

F2 :   87.31 Hz 

G2 :   98.00 Hz 

A2 :   110.00 Hz 

B2 :   123.47 Hz 

C3 :   130.81 Hz 

D3 :   146.83 Hz 

E3 :   164.81 Hz 

F3 :   174.61 Hz 

G3 :   196.00 Hz 

A3 :   220.00 Hz 

B3 :   246.94 Hz 

C4 :   261.63 Hz 

D4 :   293.66 Hz 

E4 :   329.63 Hz 

F4 :   349.23 Hz 

G4 :   392.00 Hz 

A4 :   440.00 Hz 

B4 :   493.88 Hz 

C5 :   523.25 Hz 

D5 :   587.33 Hz 

E5 :   659.26 Hz 

F5 :   698.46 Hz 

G5 :   783.99 Hz 

A5 :   880.00 Hz 

B5 :   987.77 Hz  

Starting Matlab and creating a Lab2 Directory 
 

• Choose a lab partner and a PC to work on. 
• Log in to your Athena account and then type the following commands within the 

same shell window to start Matlab: 
 

setup 6.082 
cd 
cp –rf /mit/6.082/Labs/Lab2 . 
cd 6.082 
su     (password:  4$jk88*) 
matlab & 

 
• Within the Matlab execution window, type the command: 
 

cd Lab2 

Time-Domain Analysis of Piano Notes 
 

We begin our analysis of piano notes by looking at their time-domain waveforms.  To do 
so, we’ll load a snippet from a song played from a piano and examine its basic structure. 
 

• In Matlab, execute the following commands (again, no need to type the comments 
after the % symbols): 

 
 Fs = 22050;                 % sample frequency of music snippet 
 load Sample_1;          % load in music snippet file 
 soundsc_linux(Sample_1,Fs);  % play the music snippet on the headphones 
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 t = (1:length(Sample_1))/Fs;  
 plot(t, Sample_1);      % plot the waveform 
 

• Upon executing the above commands, you should hear the note on the PC 
headphones and then see the waveform as shown below: 

 

 
 

• We see from the plot above that the amplitude of the signal decays with time.  Let 
us now consider modeling this decay as exponential damping.  To do so, we need 
to figure out the time constant of the exponential decay, tau.  In this case, we will 
simply tell you that tau = 0.5 seconds ends up being a pretty good fit.  To verify 
that this value works pretty well, type in the following Matlab commands: 

 
 tau = 0.5;                     % the time constant value we have given you 

 r = 0.08*exp(-t/tau);   % create exponential decay waveform 
 plot(t, Sample_1, t, r, t, -r); 
 
• Upon executing the above commands, you should see the plot below.  Note that 

while the assumption of exponential damping is not a perfect fit, it is a nice 
engineering approximation that we will assume for the rest of this lab. 
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• Now let us look more closely at the above signal by zooming in on the signal 
segment between 0.6 and 0.7 seconds.  At the Matlab prompt, type 

 
 axis([0.6 0.7 -0.03 0.03])   
 
 which yields the plot below: 
 

 
 

• From the zoomed-in plot above, we observe that the signal is periodic in nature.  
Unfortunately, it is difficult to figure out the frequencies associated with the 
above signal based on its time-domain plot.  That is a task better suited for 
frequency-domain analysis, as we will now explore. 
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Frequency-Domain Analysis of Piano Notes 
 

• We will now make use of the Matlab fft function to more directly examine the 
frequency content of the piano note examined in the previous section.  In 
particular, we will be looking at the magnitude of the fft output, and will focus on 
positive frequencies when doing plotting. 

 
• Assuming you just ran the Matlab commands from the previous section, continue 

by typing in the following commands: 
 
 yf = fft(Sample_1);                             % perform fft on music snippet 
 f = (0:length(yf)-1)*Fs/length(yf);    % We will not be using fftshift() to view  
                                                                   % negative frequencies, so frequency                       
                                                                   % should span 0 to Fs Hz with a little 
                                                                   % adjustment to keep length same as yf.  
  plot(f,abs(yf)); 
 axis([0 500 0 200]);                       % look at frequency range from 0 to 500 Hz 
 

o The resulting frequency-domain plot shown below reveals the frequencies of 
the periodic waveform displayed in the previous section.  In particular, we 
see that there are sine/cosine components present at several different 
frequencies, and that the relative magnitude at those different frequencies 
varies significantly from each other. Without having phase information, we 
cannot tell what the relative contribution of sine versus cosine components 
are in making up the overall magnitude at each frequency value.  The good 
news is that the phase information is essentially irrelevant in terms of how 
you will hear the music on the headphones.  Therefore, for the analysis to 
follow, we will simply assume that only sine waveforms are present and 
ignore any cosine contribution.  This decision is fairly arbitrary – we could 
just as easily have chosen cosine components instead. 
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o Looking at the above plot in more detail, we see that the key frequency 

components are at 130Hz, 195Hz, 260Hz, 330Hz, and 390 Hz (we’ll make 
this fact more clear in the section below).  Using the list of key frequencies 
shown in the figure on page 9, we determine that the musical notes 
corresponding to the observed frequency components are C3, G3, C4, E4, 
and G4.  Observe that the note pairs {C3 C4} and {G3 G4} differ in frequency 
by a factor of two, and that the amplitude of C3 > C4 and the amplitude of G3 
> G4.  This implies that C3 is a fundamental note and C4 is its second 
harmonic (or overtone); and that G3 is another fundamental note and G4 is its 
second harmonic.   

• One can see from the above exercise that frequency-domain analysis offers a very 
powerful tool in examining the structure of a given waveform.  As an example, 
knowledge of the various frequencies shown in the above plot allowed us to 
figure out which piano keys were pressed.  Such a task would be very difficult 
when looking at the time-domain view of the signals.  However, the time-domain 
view offers a different advantage – one readily sees the exponential damping of 
the signal (at least in an approximate manner), and we gain a sense of how the 
piano note decays in time.  Therefore, one should consider time and frequency 
domain analysis as being complementary – each offers its own advantages when 
trying to observe the structure of a signal. 

Signal Modeling and Synthesis of Piano Notes 
 
The power of understanding the structure of a signal is that we can use such knowledge 
to build a model of the signal, which in turn can be used to synthesize similar signals.  In 
this lab, we will seek to build a simple model of the waveforms produced when various 
piano keys are played, and then use that model to construct our own version of a piano 
song.  We start with a model based on Fourier concepts, and then simplify it further in 
order to make the synthesis task a bit easier. 
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Fourier concepts tell us that we can model the piano note we examined above as the sum 
of weighted sine and cosine components.  However, to accurately represent the decaying 
amplitude of the piano notes with non-decaying sine and cosine waveforms, we would 
need to have a large number of those sine and cosine components.  Therefore, let us 
instead consider directly modeling the decaying amplitude by assuming that the piano 
notes consist of a small number of sine waveforms with exponential damping (as 
discussed in Prelab).  As mentioned earlier, the irrelevance of phase for this application 
means that we could pick either sine or cosine waveforms to work with – our choice of 
using sine waveforms is fairly arbitrary.  In any case, we now express our signal model 
mathematically as: 
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where y(t) is assumed to be the piano note signal of interest.  We call this a parametric 
signal model since we need to determine the values of its corresponding parameters in 
order to represent the given signal.  In the above case, the parameters of the model are the 
number of sinusoids N; the amplitude of each sinusoid bi; the frequency of each sinusoid 
fi; and the rate τ at which sinusoids decay.  
 
Let us use this model to reconstruct the piano note we have been investigating.  To help 
us with this task, we will use a Matlab function called ginput.  You may want to type 
help ginput at the Matlab prompt to get more information on this command. 

• Assuming that you just ran the Matlab commands from the previous section so 
that the Figure 1 plot appears as shown on the previous page, continue by typing 
in the following command: 

 
 [f,b] = ginput(5) 
 

o After executing the above command, place the cursor within the Figure 1 
plot window and then left-click on each peak.  After you have clicked on 
each of the 5 peaks, you should see values for the f and b vectors appear 
which are similar in value to: 

 
 f = [130    195    261   328    390] 
 b = [98    150    61     135    70] 
 
o Note that the f vector values are in Hz, and the b vector values have 

significance only with respect to their relative values for our purposes here. 
o We can relate the above frequency values to those associated with the various 

piano keys. Using the frequency table shown on page 10, we obtain: 
 
 130 Hz:  C3,  195 Hz:   G3,  261 Hz:   C4,  328 Hz:   E4,  390 Hz:   G4 
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• Let us now plug in the above parameter values to the parametric model discussed 

above.  Within Matlab, continue the previous set of commands by executing: 
 
 tau = 0.5;   % note that we provided you with this value of tau earlier 
 ysin = b(1)*sin(2*pi*f(1)*t) + b(2)*sin(2*pi*f(2)*t) + b(3)*sin(2*pi*f(3)*t) +  
            b(4)*sin(2*pi*f(4)*t) + b(5)*sin(2*pi*f(5)*t); 
 y = ysin.*exp(-t/tau); 
 soundsc_linux(y,Fs); 
 plot(t,y); 
 

o You should hear the synthesized piano note in the headphones, and you 
should see a plot similar to what is shown below: 

 

 
 

o To see the frequency content of the above waveform, type the following 
command to see the plot shown below.  Note that the absolute magnitudes are 
significantly different than the actual piano music, but the relative 
magnitudes are closely matched.  In the interest of time, we’re not going to 
get into the issue of why the absolute magnitudes are different since it will 
not affect the key results we seek. 

 
 yf = abs(fft(y)); 
 f = (0:length(yf)-1)*Fs/length(yf); 
 plot(f,yf); 
 axis([0 500 0 max(yf)]); 
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o One should note that the sound is lacking the richness of the actual piano 

note.  To hear the difference, type soundsc_linux(Sample_1,Fs) at the 
Matlab prompt to hear the actual piano noted again.  The difference is due to 
the fact that we are approximating the piano note with only 5 sine waves and 
are ignoring frequency content above 500 Hz.  However, for the purposes of 
this lab, we’ll assume our approximation is close enough to get the basic 
ideas across. 

 

An Even Simpler Model for our Synthesized Piano Notes 
 
While we could directly use the parameterized model from the previous section to 
analyze the piano song we are about to examine, it would be a bit dull to simply pick off 
frequency and amplitude values using ginput().  Instead, we seek a more physically 
motivated parameterization that will allow us to connect the waveforms we see to the 
keys actually pressed on the piano. 
 
In the previous section, we determined that the frequencies from Sample_1 correspond to 
piano notes C3, G3, C4, E4, and G4.  However, it is important to note that C4 and G4 are 
second harmonics of C3  and G3, respectively.  Therefore, we can think of C3, G3 and E4 
as fundamental notes and C4, G4 as second harmonics or overtones.  The musician very 
likely only played the fundamental notes C3, G3, and E4, as indicated in the figure below.  
We know this because it is common to play notes in groups of three, which are known as 
chords or triads. The harmonics of each fundamental note are heard because striking the 
piano string associated with a fundamental note sets up string vibrations at the 
fundamental note frequency and at integer multiples of that frequency. 
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C2 D2 G2F2E2 A2 B2
C3 D3 G3F3E3 A3 B3

C4 D4 G4F4E4 A4 B4
C5 D5 G5F5E5 A5 B5

C2 :   65.41 Hz 

D2 :   73.42 Hz 

E2 :   82.41 Hz 

F2 :   87.31 Hz 

G2 :   98.00 Hz 

A2 :   110.00 Hz 

B2 :   123.47 Hz 

C3 :   130.81 Hz 

D3 :   146.83 Hz 

E3 :   164.81 Hz 

F3 :   174.61 Hz 

G3 :   196.00 Hz 

A3 :   220.00 Hz 

B3 :   246.94 Hz 

C4 :   261.63 Hz 

D4 :   293.66 Hz 

E4 :   329.63 Hz 

F4 :   349.23 Hz 

G4 :   392.00 Hz 

A4 :   440.00 Hz 

B4 :   493.88 Hz 

C5 :   523.25 Hz 

D5 :   587.33 Hz 

E5 :   659.26 Hz 

F5 :   698.46 Hz 

G5 :   783.99 Hz 

A5 :   880.00 Hz 

B5 :   987.77 Hz  
 

• Continuing our chain of Matlab commands, let us now change our parameterized 
model for the Sample_1 snippet to be based on three fundamental keys and their 
second harmonics.  As a crude approximation, we’ll simply assume that the 
fundamentals have the same amplitude, and that the harmonics have 1/2 the 
amplitude of their respective fundamentals. Within Matlab, type: 

 
 c3f = 130.81;   % frequency of note c3 
 g3f = 196;        % frequency of note g3 
 e4f = 329.63;   % frequency of note e4 
 hm = 0.5;     % relative magnitude of harmonic 
 
 c3h = sin(2*pi*c3f*t) + hm*sin(2*pi*2*c3f*t); % sine wave: c3 & harmonic 
 g3h = sin(2*pi*g3f*t) + hm*sin(2*pi*2*g3f*t); % sine wave: g3 & harmonic 
 e4h = sin(2*pi*e4f*t) + hm*sin(2*pi*2*e4f*t);  % sine wave: e4 & harmonic 
 
 c3 = c3h.*exp(-t/tau);  % include exponential damping 
 g3 = g3h.*exp(-t/tau); 
 e4 = e4h.*exp(-t/tau); 
 
            y = c3 + g3 + e4; 
 soundsc_linux(y,Fs); 
 plot(t,y); 
 

o Execution of the above commands should allow you to hear the synthesized 
notes on the headphones.  You should also see a plot similar to what is shown 
below. 
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A Composition Script for Matlab 
 
For the exercises to follow, you will be filling into a Matlab script which provides you 
with variables for all of the piano notes of interest.  In particular, you will be using the 
skills you have learned thus far in this lab to analyze a short piano song and then 
synthesize it using the simplified signal model introduced in the previous section.  Before 
we describe the exercises below, let us first look at this script so that you get a feeling of 
what it provides. 
 

• In Matlab, type: 
 
edit compose_song.m 
 

o The first portion of this file contains same basic parameters which include the 
time duration of note, the exponential damping time constant, and the relative 
harmonic magnitudes.  As stated in the file, you’ll initially keep these values 
unchanged as you complete the first exercise.  Note that duration simply 
corresponds to the approximate time that a note is played before a new note 
occurs – examination of the above plot shows that 1.6 seconds is a reasonable 
estimate of this value.  

 
  duration = 1.6;    % time duration of each note (in seconds) 
  tau = .5;               % damping time constant 
  hm = 0.5;             % relative magnitude of harmonic 
 

o The second section provides variables for each of the relevant piano keys 
which are composed of their fundamental and second harmonic waveforms 
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and are labeled c2, d2, e3, etc.  These variables will be used to construct the 
synthesized song that we will seek. 

o The third section provides placeholders for the chords that you will be 
figuring out in the exercises below.  The value for chord1 is already 
provided, and corresponds to the Sample_1 snippet that we examined earlier.  

o The final section simply strings together the chords, plays them on the 
headphones, and plots the time-domain waveform of the song. 

Exercises 
 
For the exercises below, please fill in the requested values on the check-off sheet located 
at the end of this document.  Note that the last exercise is open-ended and subjective in 
nature, and therefore requires a check-off directly by the TA before you leave. 

 
Exercise 1 
 
Here you will listen to eight notes from a piano song, determine which notes are 
being played, and then synthesize the song using the simplified parameterized model 
from Section F.  To do so, you will be running one script to hear and analyze the song 
(play_song.m), and filling in a different script (compose_song.m) to synthesize the 
song.  You will be limited to three notes per chord – note that these notes may be 
harmonically related to each other in some cases. 

 
• In Matlab, type: 

 
 play_song 
 
o You should hear eight chords of a song, and the Figure 1 plot window 

should show both the time and frequency domain views of the song.  The 
time-domain view progresses along and keeps a record of the entire song as it 
plays.  The frequency-domain view shows the fft results one chord at a time. 
Re-run the above script a few times to hear the song and see the information 
that it provides. 

• Now in Matlab, type: 
 
  edit play_song.m 
 

o Within the edit window, uncomment the pause statement that is close to the 
end of the script.  This will allow you to step through the chords one at a 
time.  Be sure to save the file when you are done. 

• Re-run the play_song script in Matlab.  You will notice that the script now pauses 
after each note.  In order to progress to the next note, you must push a key on the 
PC keyboard (the spacebar is a good choice for this). 

• You have three choices for picking off the frequency values from the Matlab plot.  
One is to use the zoom button within the Figure 1 plot window (which appears as 
a magnifying glass with a plus symbol inside of it, as circled on the left below).  
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The next is to hit Ctrl-C in order to stop the script at a given place, and then use 
ginput as discussed earlier.  The third is to click on the button circled below on 
the right within the Figure 1 plot window, which acts in similar fashion to 
ginput. 

 

 
 
1. Given the information that you see in the Figure 1 plot window for each chord, 

determine 3 appropriate piano keys for each chord played.  Assume that each key 
has equal magnitude as assumed for chord1 in Section F.  Fill in your answers in 
the check-off sheet at the end of this document. 

2. Given the piano key keys determined above, edit the compose_song.m file to 
synthesize your song.  Once you feel confident that your synthesized song sounds 
OK given your limited modeling constraints, call over a TA to get checked off on 
this exercise. 

 
Exercise 2 
 
Here we make the task more open-ended, and simply ask you to try to improve the 
signal modeling within the compose_song.m file in order to make the synthesized 
song sound truer to the actual song.  However, you must limit yourself to 3 piano 
notes per chord.  Therefore, the parameters you have available to change are as 
follows: 

o duration, tau, and hm:  these allow you to change the duration of the notes, 
the time constant of the exponential damping, and the relative magnitude of 
the second harmonic. 

o The relative scaling of notes:  we previously constrained you to chords being 
composed of equal amplitude notes (i.e.,  c3 + g3 + e4), but you may now 
weight them differently (i.e., 0.7*c3 + g3 + 0.7*e4).   
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o The number of harmonics associated with each note:  we have thus far only 
included the second harmonic – you may also add additional harmonics if 
you like and scale them by whatever factor you like.  However, all harmonics 
must be consistently scaled relative to their fundamental (i.e.., all second 
harmonics must be scaled relative to their fundamental by factor hm, and all 
third harmonics would need to be scaled relative to their fundamental by 
factor hm3, etc.). 

• When you are satisfied with your improved song, call over a TA to get checked 
off on this exercise before leaving lab. 
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PostLab (Due on Friday, February 16, 2007) 
 
 
 
___________________________________       
Student Name  
 
 

1. Is it easier to look at the issue of exponential damping in the time or frequency 
domain?  Why? 

2. Is it easier to determine which note was played in the time or frequency domain?  
Why? 

3. If the time constant of exponential damping is reduced, does that imply that the 
note lasts for a longer or shorter period of time? 

4. How are the decaying exponentials discussed in this lab different from complex 
exponentials used in the definition of Fourier Tranforms? 

5. Define what a parametric model is and explain why it is useful. 
6. How might you have improved the parametric model of musical notes further to 

achieve an even closer match to the actual musical notes? 
7. How might you apply what you learned in this lab to looking into the areas of 

speech recognition and automatic note detection for arbitrary musical pieces?  Are 
these difficult problems?  Why? 

 
 
We invite you to have more fun with this lab by continuing to improve your song on 
Athena.  
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Check-off for Lab 2 
 
 
 
 
___________________________________      __________________________________ 
 
Student Name                                                      Partner Name 
 
 
Piano notes for Exercise 1 (only 3 per chord are allowed): 
 
 

Chord 1:                  c3       g3      e4 
 
Chord 2:     _____________________________ 
 
Chord 3:     _____________________________ 
 
Chord 4:     _____________________________ 
 
Chord 5:     _____________________________  
 
Chord 6:     _____________________________ 
 
Chord 7:     _____________________________ 
 
Chord 8:     _____________________________ 
 

 
 
Check-off for synthesized song in Exercise 1 
 
 
_____________________________________________________         
 
TA Signature      
 
 
Check-off for synthesized song in Exercise 2 
 
 
_____________________________________________________         _____________        
 
TA Signature                                                                                              Score                                           


