

INTRODUCTION TO EECS II

DIGITAL COMMUNICATION SYSTEMS

6.02 Spring 2009 Lecture #25

- · Lossless vs. lossy compression
- Perceptual models
- Selecting info to eliminate
- · Quantization and entropy encoding

6.02 Spring 2009 Lecture 25, Slide

Perceptual Coding

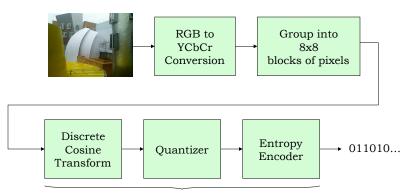
- Start by evaluating input response of bitstream consumer (eg, human ears or eyes), i.e., how consumer will perceive the input.
 - Frequency range, amplitude sensitivity, color response, ...
 - Masking effects
- Identify information that can be removed from bit stream without perceived effect, e.g.,
 - Sounds outside frequency range, or masked sounds
 - Visual detail below resolution limit (color, spatial detail)
 - Info beyond maximum allowed output bit rate
- Encode remaining information efficiently
 - Use DCT-based transformations
 - Ouantize DCT coefficients
 - Entropy code (eg, Huffman encoding) results

Lossless vs. Lossy Compression

- Huffman and LZW encodings are *lossless*, i.e., we can reconstruct the original bit stream exactly: bits_{OUT} = bits_{IN}.
 - What we want for "naturally digital" bit streams (documents, messages, datasets, ...)
- Any use for *lossy* encodings: bits_{OUT} ≈ bits_{IN}?
 - "Essential" information preserved
 - Appropriate for sampled bit streams (audio, video) intended for human consumption via imperfect sensors (ears, eyes).

6.02 Spring 2009 Lecture 25, Slide 7

Perceptual Coding Example: Images


- Characteristics of our visual system

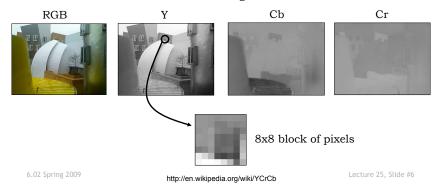
 ⇒ opportunities to remove information from the bit stream
 - More sensitive to changes in luminance than color
 ⇒ spend more bits on luminance than color (encode separately)
 - More sensitive to large changes in intensity (edges) than small changes
 - ⇒ quantize intensity values
 - Less sensitive to changes in intensity at higher spatial frequencies
 - ⇒ use larger quanta at higher spatial frequencies
- So to perceptually encode image, we would need:
 - Intensity at different spatial frequencies
 - Luminance (grey scale intensity) separate from color intensity

6.02 Spring 2009 Lecture 25, Slide #3 6.02 Spring 2009 Lecture 25, Slide #3

JPEG Image Compression

JPEG = Joint Photographic Experts Group

Performed for each 8x8 block of pixels

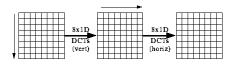

6.02 Spring 2009 Lecture 25, Slide #5

YCbCr Color Representation

JPEG-YCbCr (601) from "digital 8-bit RGB"

Y = 0.299*R + 0.587*G + 0.114*B Cb = 128 - 0.168736*R - 0.331264*G + 0.5* B Cr = 128 + 0.5*R - 0.418688*G - 0.081312*B

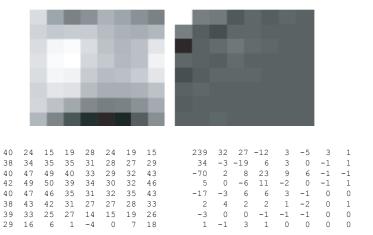
All values are in the range 0 to 255



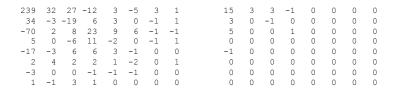
2D Discrete Cosine Transform (DCT2)

$$X_{pq} = \alpha_p \alpha_q \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} x_{mn} \cos \left[\frac{\pi}{M} \left(m + \frac{1}{2} \right) p \right] \cos \left[\frac{\pi}{N} \left(n + \frac{1}{2} \right) q \right] \quad \stackrel{0 \le p \le M-1}{\underset{0 \le q \le N-1}{}}$$

$$\alpha_p = \begin{cases} 1/\sqrt{M} & p = 0 \\ \sqrt{2/M} & 1 \le p \le M-1 \end{cases} \qquad \alpha_q = \begin{cases} 1/\sqrt{N} & q = 0 \\ \sqrt{2/N} & 1 \le q \le N-1 \end{cases}$$


$$X_k = \sum_{n=0}^{N-1} x_n \cos\left[\frac{\pi}{N} \left(n + \frac{1}{2}\right)k\right]$$
 1D DCT (Type 2)

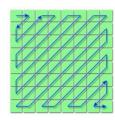
2D DCT


6.02 Spring 2009

DCT Example

6.02 Spring 2009 http://cnx.org/content/m13173/latest/ Lecture 25, Slide #9

Quantization Example


DCT Coefficients

Pixels

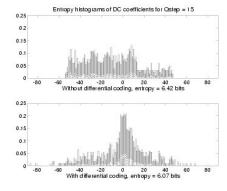
Visit coeffs in order of increasing spatial frequency ⇒ tends to create long runs of 0s towards end of list:

Quantized Coefficients

DCT Coefficients

 $15 \ 3 \ 3 \ 5 \ 0 \ 3 \ -1 \ -1 \ 0 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0...$

Quantization (the "lossy" part)


Divide each of the 64 DCT coefficients by the appropriate quantizer value (Q_{lum} for Y, Q_{chr} for Cb and Cr) and round to nearest integer \Rightarrow many 0 values, many of the rest are small integers.

Note fewer quantization levels in $Q_{\rm chr}$ and at higher spatial frequencies. Change "quality" by choosing different quantization matrices.

6.02 Spring 2009 Lecture 25, Slide #

Entropy Encoding

Use differential encoding for first coefficient (DC value) -encode difference from DC coeff of previous block.

Encode DC coeff as (N), coeff

N is Huffman encoded, differential coeff is an N-bit string

DC Coef Difference	Size	Typical Huffman codes for Size	Additional Bits (in binary)
0	0	00	-
-1,1	1	010	0,1
-3,-2,2,3	2	011	00,01,10,11
-7,,-4,4,,7	3	100	000,,011,100,111
-15,8,8,,15	4	101	0000,,0111,1000,,1111
:	:	;	:
-1023,512,512,,1023	10	1111 1110	00 0000 0000,,11 1111 1111
-2047,1024,1024,2047	11	1 1111 1110	000 0000 0000,,111 1111 1111

6.02 Spring 2009 Lecture 25, Slide #13

Entropy Encoding Example

Ouantized coeffs:

6.02 Spring 2009

15 3 3 5 0 3 -1 -1 0 0 -1 0 0 0 0 0 1 0...

DC: (N),coeff, all the rest: (run,N),coeff

(4) 15 (0,2) 3 (0,2) 3 (0,3) 5 (1,2) 3 (0,1) -1 (0,1) -1 (2,1) -1 (6,1) 1 EOB

Encode using <u>Huffman codes</u> for N and (run,N):

 $\underline{101}1111\underline{01}11\underline{01}11\underline{100}101\underline{11011}11\underline{00}0\underline{000}0\underline{11100}0\underline{1111011}1\underline{1010}$

Result: 8x8 block of 8-bit pixels (512 bits) encoded as 52 bits

10x compression!

To read more see "The JPEG Still Picture Compression Standard" by Gregory K. Wallace http://white.stanford.edu/~brian/psy221/reader/Wallace.JPEG.pdf

Encode AC coeffs as (run, N), coeff

Run = length of run of zeros preceding coefficient N = number of bits of coefficient Coeff = N-bit representation for coefficient

(run,N) pair is Huffman coded (0,0) is EOB meaning remaining coeffs are 0 (15,0) is ZRL meaning run of 16 zeros

(Run,Size)	Code Byte (hex)	Code Word (binary)	(Run,Size)	Code Byte (hex)	Code Word (binary)
(0,1)	01	00	(0,6)	06	1111000
(0,2)	02	01	(1,3)	13	1111001
(0,3)	03	100	(5,1)	51	1111010
(EOB)	00	1010	(6,1)	61	1111011
(0,4)	04	1011	(0,7)	07	11111000
(1,1)	11	1100	(2,2)	22	11111001
(0,5)	05	11010	(7,1)	71	11111010
(1,2)	12	11011	(1,4)	14	111110110
(2,1)	21	11100		:	
(3,1)	31	111010	(ZRL)	F0	11111111001
(4,1)	41	111011		:	

JPEG Results

6.02 Spring 2009

The source image (left) was converted to JPEG (q=50) and then compared, pixel-by-pixel. The error is shown in the right-hand image (darker = larger error).