



# **Key Idea: Sharing**

- Fundamental to all communication networks
- Occurs at multiple levels
  - Link sharing to alleviate  $O(N^2)$  scaling problem
  - Channel sharing to allow many nodes to share common medium (often wireless)

Hii MASSACHUSE INSTITUTE OF

# Switches Orchestrate Link Sharing • A switch is a computing device that allows many concurrent communications to share the network This structure is called a network topology









# Two Very Different Ideas for Designing Switched Networks

- · Circuit switching
  - Used by classic telephone networks
- · Packet switching
  - Used by the Internet infrastructure
  - (Phone networks also now moving to this model)

Hii PASSAC-NUST



### **Example: Time Division Multiplexing**



- Divide time into N frame times, each frame belonging to a different conversation (color)
- At most N concurrent conversations share link
- Setup: Allocate time-slot to conversation
- Add entry to table mapping (inlink,time-slot) to (outlink,time\_slot)
- Forwarding step at switch: consult table
- When does this approach (not) work?

PliT .....

## **TDM Shares Link Equally, But Has Limitations**



- Suppose link capacity is C bits/sec
- Each communication requires R bits/sec
- #frames in one "epoch" (one frame per communication) = C/R
- Maximum number of concurrent communications is C/R
- What happens if we have more than C/R communications?
- What happens if the communication sends less/more than R bits/sec?
- $\rightarrow$  Design is unsuitable when traffic arrives in bursts

Plif ....











