Media Access Protocols
Lecture 16
6.02 Spring 2010
April 5, 2010

- Shared-medium networks
- Time-Division Multiple Access (TDMA)
- Contention protocols (Aloha)
- Analysis of utilization

The Problem: Share Medium Efficiently
- Want high channel utilization
- Throughput = Useful bit rate (in bits/s or pkts/s)
- \(U = \frac{\text{Throughput}}{\text{Channel Rate}} \)
- Suppose node \(k \) gets \(n_k \) bits through in time \(T \), over medium of maximum rate \(R \) bits/s
 - Then utilization = \(\frac{\sum n_k}{T} / R \)
- Easy to achieve: just allow one node to send all the time
- So... want fairness also
 - Example: All nodes with data to send should get equal share over time (simple view of fairness)

Many Media Access (MAC) Protocols
- Aka “multiple access” protocols
- Frequency Division Multiple Access (FDMA)
- Time Division Multiple Access (TDMA)
 - Used in some cellular networks, Bluetooth
 - Poor performance with burst traffic
- Contention-based protocols
 - Aloha
 - Carrier Sense Multiple Access (CSMA) used in Ethernet, WiFi
- Channel reservation schemes
- Topic of active research in wireless networks

Time Division (TDMA)
- Conceptually similar to TDM in circuit switching
- Simple version: Time is slotted, each packet (“frame”) is one slot in length, nodes are numbered 0, 1, ..., \(N-1 \)
- Nodes take turns in round-robin order
- If current time-slot is \(t \), then node \(\#(t \mod N) \) gets to send, where \(N \) is the maximum number of nodes
- Extend to handle packets that are larger than one slot (in lab)

Our Aloha Protocol
- Model: time is slotted; all packets are integral number of slots
 - For now, assume each packet is 1 slot long
- Sender: Send packet with probability \(p \)
- Receiver: if received successfully, send ACK
- Sender: If no ACK within small timeout, sender believes packet was lost (“collision”)
- Now sender has two choices:
 - Drop this packet and move to next packet
 - Or, retry packet
Analysis of Collisions

- A collision occurs when multiple transmissions overlap in time.
- Throughput = Uncollided packets per second
- Utilization = Throughput / Channel Rate

Utilization

- Consider a simple, slotted model with N backlogged nodes.
- A node sends packets only at slot boundaries.

\[U = Np(1-p)^{(N-1)} \]

Stabilization: Selecting the right p

- Use feedback as hint.
- If pkt lost, decrease p
- Multiplicative decrease: \(p \leftarrow p/2 \)
- Binary Exponential Backoff
- If pkt received, increase p
 \(p \leftarrow 2^p \)
- Such increase/decrease thinking used widely distributed network protocols.
- How well does it work?

Performance: Severely Unfair!

- Y-axis is per-node transmission probability
- Bottom panel: per-node throughput

Performance with Fixes: Much Better

- Y-axis is per-node transmission probability
- Bottom panel: per-node throughput

Remaining Issues

- What happens when packet > 1 slot?
 - Do we need to xmit on slot boundaries?
- Carrier Sense Multiple Access (CSMA)
 - On broadcast media such as wired Ethernet or wireless LANs, can listen for activity
 - If channel busy, then wait
 - If idle, more likely for xmit to succeed
 - Improves throughput over slotted Aloha
 - Doesn’t require slotting