
6.02 Spring 2011 Lecture 1, Slide #1

6.02 Spring 2011
Lecture #1

•  Engineering goals for communication systems
•  Measuring information
•  Huffman codes

6.02 Spring 2011 Lecture 1, Slide #2

http://web.mit.edu/6.02

Questions: email 6.02-staff@mit.edu

6.02 Spring 2011 Lecture 1, Slide #3

Digital Communications

6.02 Spring 2011 Lecture 1, Slide #4

Internet: 1021 bytes/year by 2014!

6.02 Spring 2011 Lecture 1, Slide #5

6.02 Syllabus

Point-to-point communication channels (transmitter→receiver):
•  Encoding information
•  Models of communication channels
•  Noise, bit errors, error correction
•  Sharing a channel

Multi-hop networks:
•  Packet switching, efficient routing
•  Reliable delivery on top of a best-efforts network

6.02 Spring 2011 Lecture 1, Slide #6

Engineering Goals for Networks

(Class discussion)

6.02 Spring 2011 Lecture 1, Slide #7

Information Resolves Uncertainty
In information theory, information is a
mathematical quantity expressing the probability
of occurrence of a particular sequence of symbols
as contrasted with that of alternative sequences.

Information content of a sequence increases as
the probability of the sequence decreases – likely
sequences convey less information than unlikely
sequences.

We’re interested in encoding information
efficiently, i.e., trying to match the data rate to the
information rate. We’ll be thinking about:

•  Message content (one if by land, two if by sea)
•  Message timing (No lanterns? No message!)

6.02 Spring 2011 Lecture 1, Slide #8

Measuring Information Content

Claude Shannon, the father of information theory, defined the
information content of a sequence as

The unit of measurement is the bit (binary digit: “0” or “1”).

1 bit corresponds to p(seq) = !, e.g., the
probability of a heads or tails when
flipping a fair coin.

This lines up with our intuition: we can
encode the result of a single coin flip
using just 1 bit: say “1” for heads, “0”
for tails. Encoding 10 flips requires 10
bits.

log2
1

p(seq)
!

"
#

$

%
&

6.02 Spring 2011 Lecture 1, Slide #9

Expected Information Content: Entropy

Now consider a message transmitting the outcome of an event
that has a set of possible outcomes, where we know the
probability of each outcome.

Mathematicians would model the event using a discrete random
variable X with possible values {x1, …, xn} and their associated
probabilities p(x1), …, p(xn).

The entropy H of a discrete random variable X is the expected
value of the information content of X:

H (X) = E(I(X)) = p(xi
i=1

n

!)log2
1

p(xi)
"

#
$

%

&
'

6.02 Spring 2011 Lecture 1, Slide #10

Okay, why do we care about entropy?
Entropy tells us the average amount of information that must
be delivered in order to resolve all uncertainty. This is a lower
bound on the number of bits that must, on the average, be used
to encode our messages.

If we send fewer bits on average, the receiver will have some
uncertainty about the outcome described by the message.

If we send more bits on average, we’re “wasting” the capacity of
the communications channel by sending bits we don’t have to.
“Wasting” is in quotes because, alas, it’s not always possible to
find an encoding where the data rate matches the information
rate.

Achieving the entropy bound is the “gold standard” for an
encoding: entropy gives us a metric to measure encoding
effectiveness.

6.02 Spring 2011 Lecture 1, Slide #11

Special case: all pi are equal
Suppose we’re in communication about an event where all N
outcomes are equally probable, i.e., p(xi) = 1/N for all i.

Hbefore(X) =
1
N
!

"
#

$

%
&

i=1

N

' log2
1
1/ N
!

"
#

$

%
&= log2(N)

If you receive a message that reduces the set of possible
outcomes to M equally probable choices, the entropy after the
receipt of the message is

Hafter (X) =
1
M
!

"
#

$

%
&

i=1

M

' log2
1

1/M
!

"
#

$

%
&= log2(M)

The information content of the received message is given by the
change in entropy:

Hmessage(X) = Hbefore !Hafter = log2(N)! log2(M) = log2(N /M)

6.02 Spring 2011 Lecture 1, Slide #12

Example
We’re drawing cards at random from a standard 52-card deck:

Q. If I tell you the card is a ♤, how many bits of information
have you received?

A. We’ve gone from N=52 possible cards down to M=13 possible
cards, so the amount of info received is log2(52/13) = 2 bits.

This makes sense, we can encode one of the 4 (equally probable)
suits using 2 bits, e.g., 00=♡, 01=♢, 10=♧, 11=♤.

Q. If instead I tell you the card is a seven, how much info?

A.  N=52, M=4, so info = log2(52/4) = log2(13) = 3.7 bits

Hmm, what does it mean to have a fractional bit?

6.02 Spring 2011 Lecture 1, Slide #13

Example (cont’d.)
Q. If I tell you the card is the 7 of spades, how many bits of
information have you received?

A. We’ve gone from N=52 possible cards down to M=1 possible
cards, so the amount of info received is log2(52/1) = 5.7 bits.

Note that information is additive (5.7 = 3 + 2.7)!

But this is true only when the separate pieces of information are
independent (not redundant in any way).

So if I sent first sent a message the card was black (i.e., a ♤ or
♧) – 1 bit of information since p(♤ or ♧) = ! – and then sent the
message it was a spade, the total information received is not the
sum of the information content of the two messages since the
information in the second message overlaps the information of
the first message.

6.02 Spring 2011 Lecture 1, Slide #14

Fixed-length Encodings

An obvious choice for encoding equally probable outcomes
is to choose a fixed-length code that has enough sequences
to encode the necessary information

•  96 printing characters → 7-bit ASCII
•  Unicode characters → UTF-16
•  10 decimal digits → 4-bit BCD (binary coded decimal)

Fixed-length codes have some advantages:

•  They are “random access” in the sense that to decode

the nth message symbol one can decode the nth fixed-
length sequence without decoding sequence 1 through
n-1.

•  Table lookup suffices for encoding and decoding

6.02 Spring 2011 Lecture 1, Slide #15

Improving on Fixed-length Encodings
choicei pi

“A” 1/3

“B” 1/2

“C” 1/12

“D” 1/12

The expected information content in a choice is given by the
entropy:
 = (.333)(1.58) + (.5)(1) + (2)(.083)(3.58) = 1.626 bits

Can we find an encoding where transmitting 1000 choices
requires 1626 bits on the average?

The “natural” fixed-length encoding uses two bits for each choice,
so transmitting the results of 1000 choices requires 2000 bits.

log2(1/pi)

1.58 bits

1 bit

3.58 bits

3.58 bits

6.02 Spring 2011 Lecture 1, Slide #16

Variable-length encodings
(David Huffman, MIT 1950)

choicei pi encoding

“A” 1/3 10

“B” 1/2 0

“C” 1/12 110

“D” 1/12 111

B

C D
A

1 0

1 0

1 0

Use shorter bit sequences for high probability choices,
longer sequences for less probable choices

011010010111

Huffman Decoding Tree

BC A BA D
Expected length
=(.333)(2)+(.5)(1)+(2)(.083)(3)

= 1.666 bits

Transmitting 1000
choices takes an
average of 1666 bits…
better but not optimal

6.02 Spring 2011 Lecture 1, Slide #17

Another Variable-length Code (not!)
Here’s an alternative variable-length for the example on the
previous page:

Letter Encoding

A 0

B 1

C 00

D 01

Why isn’t this a workable code?

The expected length of an encoded message is

 (.333+.5)(1) + (.083 + .083)(2) = 1.22 bits

which even beats the entropy bound !

6.02 Spring 2011 Lecture 1, Slide #18

Huffman’s Coding Algorithm
•  Begin with the set S of symbols to be encoded as binary strings,

together with the probability p(s) for each symbol s in S. The
probabilities sum to 1 and measure the frequencies with which
each symbol appears in the input stream. In the example from the
previous slide, the initial set S contains the four symbols and their
associated probabilities from the table.

•  Repeat the following steps until there is only 1 symbol left in S:

–  Choose the two members of S having lowest probabilities.
Choose arbitrarily to resolve ties.

–  Remove the selected symbols from S, and create a new node of
the decoding tree whose children (sub-nodes) are the symbols
you've removed. Label the left branch with a “0”, and the right
branch with a “1”.

–  Add to S a new symbol that represents this new node. Assign
this new symbol a probability equal to the sum of the
probabilities of the two nodes it replaces.

6.02 Spring 2011 Lecture 1, Slide #19

Huffman Coding Example
•  Initially S = { (A, 1/3) (B, 1/2) (C, 1/12) (D, 1/12) }

•  First iteration
–  Symbols in S with lowest probabilities: C and D

–  Create new node

–  Add new symbol to S = { (A, 1/3) (B, 1/2) (CD, 1/6) }

•  Second iteration
–  Symbols in S with lowest probabilities: A and CD

–  Create new node

–  Add new symbol to S = { (B, 1/2) (ACD, 1/2) }

•  Third iteration
–  Symbols in S with lowest probabilities: B and ACD

–  Create new node

–  Add new symbol to S = { (BACD, 1) }

•  Done

C D

0 1
CD

C D

0 1

ACD
0 1

A

C D

0 1

0 1

A

0 1

B

6.02 Spring 2011 Lecture 1, Slide #20

Huffman Codes – the final word?
•  Given static symbol probabilities, the Huffman algorithm

creates an optimal encoding when each symbol is encoded
separately. (optimal ≡ no other encoding will have a shorter
expected message length)

•  Huffman codes have the biggest impact on average message
length when some symbols are substantially more likely than
other symbols.

•  You can improve the results by adding encodings for symbol
pairs, triples, quads, etc. From example code:
 Pairs: 1.646 bits/sym, Triples: 1.637, Quads 1.633, …
But the number of possible encodings quickly becomes
intractable.

•  Symbol probabilities change message-to-message, or even
within a single message.

•  Can we do adaptive variable-length encoding?
–  Tune in next time!

