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•  Engineering goals for communication systems 
•  Measuring information 
•  Huffman codes 
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http://web.mit.edu/6.02 

Questions: email 6.02-staff@mit.edu 
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Digital Communications 
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Internet: 1021 bytes/year by 2014! 
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6.02 Syllabus 

Point-to-point communication channels (transmitter→receiver): 
•  Encoding information 
•  Models of communication channels 
•  Noise, bit errors, error correction 
•  Sharing a channel 

Multi-hop networks: 
•  Packet switching, efficient routing 
•  Reliable delivery on top of a best-efforts network 
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Engineering Goals for Networks 

(Class discussion) 
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Information Resolves Uncertainty 
In information theory, information is a 
mathematical quantity expressing the probability 
of occurrence of a particular sequence of symbols 
as contrasted with that of alternative sequences. 
 
Information content of a sequence increases as 
the probability of the sequence decreases – likely 
sequences convey less information than unlikely 
sequences. 
 
We’re interested in encoding information 
efficiently, i.e., trying to match the data rate to the 
information rate. We’ll be thinking about: 
 
•  Message content (one if by land, two if by sea) 
•  Message timing (No lanterns?  No message!) 
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Measuring Information Content 

Claude Shannon, the father of information theory, defined the 
information content of a sequence as 

The unit of measurement is the bit (binary digit: “0” or “1”). 

1 bit corresponds to p(seq) = !, e.g., the 
probability of a heads or tails when 
flipping a fair coin. 
 
This lines up with our intuition: we can 
encode the result of a single coin flip 
using just 1 bit: say “1” for heads, “0” 
for tails.  Encoding 10 flips requires 10 
bits. 
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Expected Information Content: Entropy 

Now consider a message transmitting the outcome of an event 
that has a set of possible outcomes, where we know the 
probability of each outcome. 
 
Mathematicians would model the event using a discrete random 
variable X with possible values {x1, …, xn} and their associated 
probabilities p(x1), …, p(xn). 
 
The entropy H of a discrete random variable X is the expected 
value of the information content of X: 

H (X) = E(I(X)) = p(xi
i=1
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Okay, why do we care about entropy? 
Entropy tells us the average amount of information that must 
be delivered in order to resolve all uncertainty.  This is a lower 
bound on the number of bits that must, on the average, be used 
to encode our messages. 
 
If we send fewer bits on average, the receiver will have some 
uncertainty about the outcome described by the message. 
 
If we send more bits on average, we’re “wasting” the capacity of 
the communications channel by sending bits we don’t have to.  
“Wasting” is in quotes because, alas, it’s not always possible to 
find an encoding where the data rate matches the information 
rate. 
 
Achieving the entropy bound is the “gold standard” for an 
encoding: entropy gives us a metric to measure encoding 
effectiveness. 
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Special case: all pi are equal 
Suppose we’re in communication about an event where all N 
outcomes are equally probable, i.e., p(xi) = 1/N for all i. 
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If you receive a message that reduces the set of possible 
outcomes to M equally probable choices, the entropy after the 
receipt of the message is 

Hafter (X) =
1
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The information content of the received message is given by the 
change in entropy: 

Hmessage(X) = Hbefore !Hafter = log2(N )! log2(M ) = log2(N /M )
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Example 
We’re drawing cards at random from a standard 52-card deck: 
 
Q. If I tell you the card is a ♤, how many bits of information 
have you received? 
 
A. We’ve gone from N=52 possible cards down to M=13 possible 
cards, so the amount of info received is log2(52/13) = 2 bits. 
 
This makes sense, we can encode one of the 4 (equally probable) 
suits using 2 bits, e.g., 00=♡, 01=♢, 10=♧, 11=♤. 

Q. If instead I tell you the card is a seven, how much info? 
 
A.  N=52, M=4, so info = log2(52/4) = log2(13) = 3.7 bits 

Hmm, what does it mean to have a fractional bit? 
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Example (cont’d.) 
Q. If I tell you the card is the 7 of spades, how many bits of 
information have you received? 
 
A. We’ve gone from N=52 possible cards down to M=1 possible 
cards, so the amount of info received is log2(52/1) = 5.7 bits. 
 
Note that information is additive (5.7 = 3 + 2.7)! 
 
But this is true only when the separate pieces of information are 
independent (not redundant in any way). 
 
So if I sent first sent a message the card was black (i.e., a ♤ or 
♧) – 1 bit of information since p(♤ or ♧) = ! – and then sent the 
message it was a spade, the total information received is not the 
sum of the information content of the two messages since the 
information in the second message overlaps the information of 
the first message. 

6.02 Spring 2011 Lecture 1, Slide #14 

Fixed-length Encodings 

An obvious choice for encoding equally probable outcomes 
is to choose a fixed-length code that has enough sequences 
to encode the necessary information 
 
•  96 printing characters → 7-bit ASCII 
•  Unicode characters → UTF-16 
•  10 decimal digits → 4-bit BCD (binary coded decimal) 

Fixed-length codes have some advantages: 
 
•  They are “random access” in the sense that to decode 

the nth message symbol one can decode the nth fixed-
length sequence without decoding sequence 1 through 
n-1. 

•  Table lookup suffices for encoding and decoding 

6.02 Spring 2011 Lecture 1, Slide #15 

Improving on Fixed-length Encodings 
choicei pi 

“A” 1/3 

“B” 1/2 

“C” 1/12 

“D” 1/12 

The expected information content in a choice is given by the 
entropy: 
  = (.333)(1.58) + (.5)(1) + (2)(.083)(3.58) = 1.626 bits 
 
Can we find an encoding where transmitting 1000 choices 
requires 1626 bits on the average? 
 
The “natural” fixed-length encoding uses two bits for each choice, 
so transmitting the results of 1000 choices requires 2000 bits. 

log2(1/pi) 

1.58 bits 

1 bit 

3.58 bits 

3.58 bits 
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Variable-length encodings 
(David Huffman, MIT 1950) 

choicei pi encoding 

“A” 1/3 10 

“B” 1/2 0 

“C” 1/12 110 

“D” 1/12 111 

B 

C D 
A 

1 0 

1 0 

1 0 

Use shorter bit sequences for high probability choices, 
longer sequences for less probable choices 

011010010111 

Huffman Decoding Tree  

BC  A BA D 
Expected length 
=(.333)(2)+(.5)(1)+(2)(.083)(3) 

= 1.666 bits 
 
Transmitting 1000 
choices takes an 
average of 1666 bits… 
better but not optimal 
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Another Variable-length Code (not!) 
Here’s an alternative variable-length for the example on the 
previous page: 

Letter Encoding 

A 0 

B 1 

C 00 

D 01 

Why isn’t this a workable code?   
 
The expected length of an encoded message is 
 
               (.333+.5)(1) + (.083 + .083)(2) = 1.22 bits 
 
which even beats the entropy bound ! 
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Huffman’s Coding Algorithm 
•  Begin with the set S of symbols to be encoded as binary strings, 

together with the probability p(s) for each symbol s in S. The 
probabilities sum to 1 and measure the frequencies with which 
each symbol appears in the input stream. In the example from the 
previous slide, the initial set S contains the four symbols and their 
associated probabilities from the table.  

•  Repeat the following steps until there is only 1 symbol left in S:  

–  Choose the two members of S having lowest probabilities. 
Choose arbitrarily to resolve ties. 

–  Remove the selected symbols from S, and create a new node of 
the decoding tree whose children (sub-nodes) are the symbols 
you've removed. Label the left branch with a “0”, and the right 
branch with a “1”.  

–  Add to S a new symbol that represents this new node. Assign 
this new symbol a probability equal to the sum of the 
probabilities of the two nodes it replaces. 
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Huffman Coding Example 
•  Initially S = { (A, 1/3)  (B, 1/2)  (C, 1/12)  (D, 1/12) } 

•  First iteration 
–  Symbols in S with lowest probabilities: C and D 

–  Create new node 

–  Add new symbol to S = { (A, 1/3)  (B, 1/2)  (CD, 1/6) } 

•  Second iteration 
–  Symbols in S with lowest probabilities: A and CD 

–  Create new node 

–  Add new symbol to S = { (B, 1/2)  (ACD, 1/2) } 

•  Third iteration 
–  Symbols in S with lowest probabilities: B and ACD 

–  Create new node 

–  Add new symbol to S = { (BACD, 1) } 

•  Done 
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Huffman Codes – the final word? 
•  Given static symbol probabilities, the Huffman algorithm 

creates an optimal encoding when each symbol is encoded 
separately.  (optimal ≡ no other encoding will have a shorter 
expected message length) 

•  Huffman codes have the biggest impact on average message 
length when some symbols are substantially more likely than 
other symbols. 

•  You can improve the results by adding encodings for symbol 
pairs, triples, quads, etc.  From example code:  
     Pairs: 1.646 bits/sym, Triples: 1.637, Quads 1.633, … 
But the number of possible encodings quickly becomes 
intractable. 

•  Symbol probabilities change message-to-message, or even 
within a single message. 

•  Can we do adaptive variable-length encoding? 
–  Tune in next time! 


