6.02 Spring 2011
Lecture #2

- Adaptive variable-length codes: LZW
- Perceptual coding

Huffman Codes - the final word?

- Given static symbol probabilities, the Huffman algorithm creates an **optimal encoding** when each symbol is encoded separately. (optimal ≡ no other encoding will have a shorter expected message length)
- Huffman codes have the biggest impact on average message length when some symbols are substantially more likely than other symbols.
- You can improve the results by adding encodings for symbol pairs, triples, quads, etc. But the number of possible encodings quickly becomes intractable.
- Symbol probabilities change message-to-message, or even within a single message.
- Can we do **adaptive variable-length encoding**?

Adaptive Variable-length Codes

- Algorithm first developed by Lempel and Ziv, later improved by Welch. Now commonly referred to as the “LZW Algorithm”
- As message is processed a “string table” is built which maps symbol sequences to an N-bit fixed-length code. Table size = 2^N
- **Transmit table indices**, usually shorter than the corresponding string → compression!
- Note: String table can be reconstructed by the decoder based on information in the encoded stream – the table, while central to the encoding and decoding process, is never transmitted!

Example from Last Lecture

<table>
<thead>
<tr>
<th>choice, i</th>
<th>p_i</th>
<th>$\log_2(1/p_i)$</th>
<th>$p_i \times \log_2(1/p_i)$</th>
<th>Huffman encoding</th>
<th>Expected length</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A”</td>
<td>1/3</td>
<td>1.58 bits</td>
<td>0.528 bits</td>
<td>10</td>
<td>0.667 bits</td>
</tr>
<tr>
<td>“B”</td>
<td>1/2</td>
<td>1 bit</td>
<td>0.5 bits</td>
<td>0</td>
<td>0.5 bits</td>
</tr>
<tr>
<td>“C”</td>
<td>1/12</td>
<td>3.58 bits</td>
<td>0.299 bits</td>
<td>110</td>
<td>0.25 bits</td>
</tr>
<tr>
<td>“D”</td>
<td>1/12</td>
<td>3.58 bits</td>
<td>0.299 bits</td>
<td>111</td>
<td>0.25 bits</td>
</tr>
</tbody>
</table>

| Total | 1.626 bits | 1.667 bits |

Entropy is 1.626 bits/symbol, expected length of Huffman encoding is 1.667 bits/symbol.

How do we do better?

- 16 Pairs: 1.646 bits/sym
- 64 Triples: 1.637 bits/sym
- 256 Quads: 1.633 bits/sym

First 256 table entries hold all the one-byte strings.

Remaining entries are filled with sequences from the message. When full, reinitialize table...
LZW Encoding

STRING = get input symbol
WHILE there are still input symbols DO
 SYMBOL = get input symbol
 IF STRING + SYMBOL is in the string table THEN
 STRING = STRING + SYMBOL
 ELSE
 output the code for STRING
 add STRING + SYMBOL to the string table
 STRING = SYMBOL
 END
END
output the code for STRING

Example: Encode “abbbabbbab...”

1. Read a; string = a
2. Read b; ab not in table
 output 97, add ab to table, string = b
3. Read b; bb not in table
 output 98, add bb to table, string = bb
4. Read b; bb in table, string = bb
5. Read a; bba not in table
 output 257, add bba to table, string = a
6. Read b, ab in table, string = ab
7. Read b, ab not in table
 output 256, add abb to table, string = bb
8. Read b, bb in table, string = bb
9. Read a, bba in table, string = bba
10. Read b, bbab not in table
 output 258, add bbab to table, string = b

Encoder Notes

• The encoder algorithm is greedy – it’s designed to find the longest possible match in the string table before it makes a transmission.
• The string table is filled with sequences actually found in the message stream. No encodings are wasted on sequences not actually found in the file.
• Note that in this example the amount of compression increases as the encoding progresses, i.e., more input bytes are consumed between transmissions.
• Eventually the table will fill and then be reinitialized, recycling the N-bit codes for new sequences. So the encoder will eventually adapt to changes in the probabilities of the symbols or symbol sequences.

LZW Decoding

Read CODE
output CODE
STRING = CODE
WHILE there are still codes to receive DO
 Read CODE
 IF CODE is not in the translation table THEN
 ENTRY = STRING + STRING[0]
 ELSE
 ENTRY = get translation of CODE
 END
 output ENTRY
 add STRING+ENTRY[0] to the translation table
 STRING = ENTRY
END

Easy: use table lookup to convert code to message string
Less easy: build table that’s identical to that in encoder
Example: Decode 97, 97, 257, 256, 258

1. Read 97; output a; string = a
2. Read 98; entry = b; output b; add ab to table; string = b
3. Read 257; entry = bb; output bb; add bb to table; string = bb
4. Read 256; entry = ab; output ab; add bba to table; string = ab
5. Read 258; entry = bba; output bba; add bba to table; string = bba

Perceptual Coding

- Start by evaluating input response of bitstream consumer (e.g., human ears or eyes), i.e., how consumer will perceive the input.
 - Frequency range, amplitude sensitivity, color response, ...
 - Masking effects
- Identify information that can be removed from bitstream without perceived effect, e.g.,
 - Sounds outside frequency range, or masked sounds
 - Visual detail below resolution limit (color, spatial detail)
 - Info beyond maximum allowed output bit rate
- Encode remaining information efficiently
 - Use DCT-based transformations (real instead of complex)
 - Quantize DCT coefficients
 - Entropy code (e.g., Huffman encoding) results

Lossless vs. Lossy Compression

- Huffman and LZW encodings are lossless, i.e., we can reconstruct the original bit stream exactly: \(\text{bits}_{\text{OUT}} = \text{bits}_{\text{IN}} \).
 - What we want for “naturally digital” bit streams (documents, messages, datasets, ...)
- Any use for lossy encodings: \(\text{bits}_{\text{OUT}} \neq \text{bits}_{\text{IN}} \)?
 - “Essential” information preserved
 - Appropriate for sampled bit streams (audio, video) intended for human consumption via imperfect sensors (ears, eyes).

Perceptual Coding Example: Images

- Characteristics of our visual system ⇒ opportunities to remove information from the bit stream
 - More sensitive to changes in luminance than color ⇒ spend more bits on luminance than color (encode separately)
 - More sensitive to large changes in intensity (edges) than small changes ⇒ quantize intensity values
 - Less sensitive to changes in intensity at higher spatial frequencies ⇒ use larger quanta at higher spatial frequencies
- So to perceptually encode image, we would need:
 - Intensity at different spatial frequencies
 - Luminance (grey scale intensity) separate from color intensity
JPEG Image Compression

JPEG = Joint Photographic Experts Group

![JPEG Compression Diagram](image)

- RGB to YCbCr Conversion
- Group into 8x8 blocks of pixels
- Convert to energy at different spatial freqs.
- Quantizer
- Entropy Encoder
- 011010...

Performed for each 8x8 block of pixels

YCbCr Color Representation

JPEG-YCbCr (601) from “digital 8-bit RGB”

\[
\begin{align*}
Y &= 16 + 0.299R + 0.587G + 0.114B \\
Cb &= 128 - 0.168736R - 0.331264G + 0.5B \\
Cr &= 128 + 0.5R - 0.418688G - 0.081312B
\end{align*}
\]

All values are in the range 16 to 235

2D DCT Basis Functions

- **DC Component**

Lenna DCT Coefs from each 8x8 block

- DC coeffs carry a lot of the picture info!
- Low freqs contain major edge info (note more H and V...)
- High freqs contain fine detail (eg, texture of feather)
Quantization (the “lossy” part)

Divide each of the 64 DCT coefficients by the appropriate quantizer value (Q_{lum} for Y, Q_{chr} for Cb and Cr) and round to nearest integer ⇒ many 0 values, many of the rest are small integers.

Note fewer quantization levels in Q_{chr} and at higher spatial frequencies. Change “quality” by choosing different quantization matrices.

Entropy Encoding Example

Quantized coeffs:

$$\begin{align*}
-14 & -13 & 13 & 0 & -1 & 4 & -2 & 6 & 0 & 2 & -1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
\end{align*}$$

DC: (N), coeff, all the rest: (run,N), coeff

(4)-14 (0,4)-13 (0,4)13 (1,1)-1 (0,3)4 (0,2)-2 (0,2)-2 (0,3)6 (2,2)2 (0,1)-1 (1,1)-1 (0,1)-1 (0,1)1 (5,1)-1 EOB

Encode using Huffman codes for N and (run,N):

1010001 10110010 10111101 11000 100100 0101 0101 100110 1111101110 000 110000 000 001 11110100 1010

Result: 8x8 block of 8-bit pixels (512 bits) encoded as 84 bits

6x compression!

To read more see "The JPEG Still Picture Compression Standard" by Gregory K. Wallace
http://white.stanford.edu/~brian/psy221/reader/Wallace.JPEG.pdf

Quantization Example

$$\begin{align*}
[-231 -148 & 38 -24 -15 0 4 0] \\
[153 & -11 -35 -2 -28 14 -2 0] \\
[3 & 73 -16 -29 2 8 -4 -3] \\
[-4 & 28 -17 -25 -1 6 -8 -4] \\
[0 & 4 & 5 & 6 & 4 & 4 & -2 & -5] \\
[3 & -4 & 2 & 10 & 6 & 0 & -6 & -3] \\
[-2 & 0 & -1 & 6 & 3 & -1 & -5 & -5] \\
[-3 & 1 & 2 & -2 & 0 & 1 & 0 & 0] \\
\end{align*}$$

Visit coeffs in order of increasing spatial frequency ⇒ tends to create long runs of 0s towards end of list:

$$\begin{align*}
-14 \\
-13 & 13 \\
0 & -1 & 4 \\
-2 & -2 & 6 & 0 \\
0 & 2 & -1 & 0 & -1 \\
0 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
\end{align*}$$

JPEG Results

The source image (left) was converted to JPEG (q=50) and then compared, pixel-by-pixel. The error is shown in the right-hand image (darker = larger error).