

INTRODUCTION TO EECS II

COMMUNICATION SYSTEMS

6.02 Spring 2011 Lecture #2

- Adaptive variable-length codes: LZW
- Perceptual coding

6.02 Spring 2011

Lecture 2, Slide #1

Huffman Codes - the final word?

- · Given static symbol probabilities, the Huffman algorithm creates an optimal encoding when each symbol is encoded separately. (optimal \equiv no other encoding will have a shorter expected message length)
- Huffman codes have the biggest impact on average message length when some symbols are substantially more likely than other symbols.
- You can improve the results by adding encodings for symbol pairs, triples, quads, etc. But the number of possible encodings quickly becomes intractable.
- Symbol probabilities change message-to-message, or even within a single message.
- Can we do adaptive variable-length encoding?

Example from Last Lecture

choice _i	p_i	$log_2(1/p_i)$	$p_i * log_2(1/p_i)$	Huffman encoding	Expected length
"A"	1/3	1.58 bits	0.528 bits	10	0.667 bits
"В"	1/2	1 bit	0.5 bits	0	0.5 bits
"C"	1/12	3.58 bits	0.299 bits	110	0.25 bits
"D"	1/12	3.58 bits	0.299 bits	111	0.25 bits
			1.626 bits		1.667 bits

Entropy is 1.626 bits/symbol, expected length of Huffman encoding is 1.667 bits/symbol.

How do we do better?

16 Pairs: 1.646 bits/sym 64 Triples: 1.637 bits/sym 256 Quads: 1.633 bits/sym

6.02 Spring 2011

Lecture 2. Slide #2

Adaptive Variable-length Codes

- Algorithm first developed by Lempel and Ziv, later improved by Welch. Now commonly referred to as the "LZW Algorithm"
- As message is processed a "string table" is built which maps symbol sequences to an N-bit fixed-length code. Table size = 2^{N}
- Transmit table indices, usually shorter than the corresponding string \rightarrow compression!
- Note: String table can be reconstructed by the decoder based on information in the encoded stream – the table, while central to the encoding and decoding process, is never transmitted!

6.02 Spring 2011

6.02 Spring 2011

Lecture 2. Slide #4

LZW Encoding

STRING = get input symbol
WHILE there are still input symbols DO
SYMBOL = get input symbol
IF STRING + SYMBOL is in the string table THEN
STRING = STRING + SYMBOL
ELSE
output the code for STRING
add STRING + SYMBOL to the string table
STRING = SYMBOL
END
END
output the code for STRING

- 1. Accumulate message bytes in S as long as S appears in table.
- 2. When S+b isn't in table: send code for S, add S+b to table.
- 3. Reinitialize S with b, back to step 1.

```
6.02 Spring 2011 From http://marknelson.us/1989/10/01/lzw-data-compression/ Lecture 2, Slide #5
```

```
Example: Encode "abbbabbab..."
```

		-	Read a; string = a
256	ab	2.	Read b; ab not in table output 97, add ab to table, string = b
257	bb	3.	Read b; bb not in table
258	bba		output 98, add bb to table, string = b
259	abb	4.	Read b; bb in table, string = bb
260	bbab	5.	Read a; bba not in table output 257, add bba to table, string = a
261		6.	Read b, ab in table, string = ab
262		7.	Read b, abb not in table output 256, add abb to table, string = b
		8.	Read b, bb in table, string = bb
		9.	Read a, bba in table, string = bba
		10	. Read b, bbab not in table
			output 258, add bbab to table, string = b

6.02 Spring 2011

Lecture 2, Slide #6

Encoder Notes

- The encoder algorithm is greedy it's designed to find the longest possible match in the string table before it makes a transmission.
- The string table is filled with sequences actually found in the message stream. No encodings are wasted on sequences not actually found in the file.
- Note that in this example the amount of compression increases as the encoding progresses, i.e., more input bytes are consumed between transmissions.
- Eventually the table will fill and then be reinitialized, recycling the N-bit codes for new sequences. So the encoder will eventually adapt to changes in the probabilities of the symbols or symbol sequences.

LZW Decoding

```
Read CODE
output CODE
STRING = CODE
```

```
WHILE there are still codes to receive DO
   Read CODE
   IF CODE is not in the translation table THEN
      ENTRY = STRING + STRING[0]
   ELSE
      ENTRY = get translation of CODE
   END
   output ENTRY
   add STRING+ENTRY[0] to the translation table
   STRING = ENTRY
```

END

Easy: use table lookup to convert code to message string Less easy: build table that's identical to that in encoder

6.02 Spring 2011

Example: Decode 97, 97, 257, 256, 258

256	ab	1.	Read 97; output a; string = a
257	bb	2	Read 98; entry = b
258	bba	4.	output b; add ab to table; string = b
259	abb	3.	Read 257; entry = bb
260			output bb; add bb to table; string = bb
261		4.	Read 256; entry = ab
262			output ab; add bba to table; string = ab
202		5.	Read 258; entry = bba
			<pre>output bba; add abb to table; string = bba</pre>

Lossless vs. Lossy Compression

- Huffman and LZW encodings are *lossless*, i.e., we can reconstruct the original bit stream exactly: bits_{OUT} = bits_{IN}.
 - What we want for "naturally digital" bit streams (documents, messages, datasets, ...)
- Any use for *lossy* encodings: bits_{OUT} ≈ bits_{IN}?
 - "Essential" information preserved
 - Appropriate for sampled bit streams (audio, video) intended for human consumption via imperfect sensors (ears, eyes).

6.02 Spring 2011

Lecture 2, Slide #9

Perceptual Coding

- Start by evaluating input response of bitstream consumer (eg, human ears or eyes), i.e., how consumer will perceive the input.
 - Frequency range, amplitude sensitivity, color response, ...
 - Masking effects
- Identify information that can be removed from bit stream without perceived effect, e.g.,
 - Sounds outside frequency range, or masked sounds
 - Visual detail below resolution limit (color, spatial detail)
 - Info beyond maximum allowed output bit rate
- Encode remaining information efficiently
 - Use DCT-based transformations (real instead of complex)
 - Quantize DCT coefficients
 - Entropy code (eg, Huffman encoding) results

Lecture 2, Slide #11

Perceptual Coding Example: Images

- Characteristics of our visual system
 ⇒ opportunities to remove information from the bit
 stream
 - More sensitive to changes in luminance than color
 ⇒ spend more bits on luminance than color (encode separately)
 - More sensitive to large changes in intensity (edges) than small changes
 - \Rightarrow quantize intensity values
 - Less sensitive to changes in intensity at higher spatial frequencies
 ⇒ use larger quanta at higher spatial frequencies
- So to perceptually encode image, we would need:
 - Intensity at different spatial frequencies
 - Luminance (grey scale intensity) separate from color intensity

6.02 Spring 2011

Lecture 2. Slide #10

6.02 Spring 2011

Lecture 2, Slide #13

YCbCr Color Representation

JPEG-YCbCr (601) from "digital 8-bit RGB"

Y = 16 + 0.299 R + 0.587 G + 0.114 BCb = 128 - 0.168736*R - 0.331264*G + 0.5* B Cr = 128 + 0.5*R - 0.418688*G - 0.081312*B

All values are in the range 16 to 235

2D DCT Basis Functions DC Component 200 1000 32 33 88 5765 I **333** Lecture 2. Slide #15

Lenna DCT Coeffs from each 8x8 block

Quantization (the "lossy" part)

Divide each of the 64 DCT coefficients by the appropriate quantizer value (Q_{lum} for Y, Q_{chr} for Cb and Cr) and round to nearest integer \Rightarrow many 0 values, many of the rest are small integers.

	16	11	10	16	24	40	51	61		(17	18	24	47	99	99	99	99)
	12	12	14	19	26	58	60	55	Q _{chr} =	18	21	26	66	99	99	99	99
	14	13	16	24	40	57	69	56		24	26	56	99	99	99	99	99
	14	17	22	29	51	87	80	62		47	66	99	99	99	99	99	99
$Q_{lum} =$	18	22	37	56	68	109	103	77		99	99	99	99	99	99	99	99
	24	35	55	64	81	104	113	92		99	99	99	99	99	99	99	99
	49	64	78	87	103	121	120	101		99	99	99	99	99	99	99	99
	72	92	95	98	112	100	103	99		99	99	99	99	99	99	99	99)

Note fewer quantization levels in Q_{chr} and at higher spatial frequencies. Change "quality" by choosing different quantization matrices.

6.02 Spring 2011

Lecture 2, Slide #17

Quantization Example

[[- []	-231 153 3	-148 -11 73	38 -35 -16	-24 -2 -29	-15 -28 2	0 14 8	4 -2 -4	0] 0] -3]	[[- [[14 13 0	-13 -1 6	4 -2 -1	-2 0 -1	-1 -1 0	0 0 0	0 0 0	0] 0] 0]
[-4	28	17	-25	-1	6	-8	-4]	[0	2	1	-1	0	0	0	0]
[0	4	5	6	4	4	-2	-5]	[0	0	0	0	0	0	0	0]
[3	-4	2	10	6	0	-6	-3]	[0	0	0	0	0	0	0	0]
[-2	0	-1	6	3	-1	-5	-5]	[0	0	0	0	0	0	0	0]
[-3	1	2	-2	0	1	0	0]]	[0	0	0	0	0	0	0	0]]
	DCT Coefficients								Q	ua	ntize	ed/H	Roui	nded	l Co	effic	ients

Visit coeffs in order of increasing spatial frequency \Rightarrow tends to create long runs of 0s towards end of list:

0....

-14					
-13	13				
0	-1	4			
-2	-2	6	0		
0	2	-1	0	-1	
0	-1	-1	1	0	0
0	0	0	-1	0	0

6.02 Spring 2011

Lecture 2, Slide #18

Entropy Encoding Example

Quantized coeffs:

-14 -13 13 0 -1 4 -2 -2 6 0 0 2 -1 0 -1 0 -1 -1 1 0 0 0 0 0 -1 0 0 0...

DC: (N),coeff, all the rest: (run,N),coeff

(4)-14 (0,4)-13 (0,4)13 (1,1)-1 (0,3)4 (0,2)-2 (0,2)-2 (0,3)6 (2,2)2 (0,1)-1 (1,1)-1 (0,1)-1 (0,1)1 (5,1)-1 EOB

Encode using <u>Huffman codes</u> for N and (run,N):

Result: 8x8 block of 8-bit pixels (512 bits) encoded as 84 bits

To read more see "The JPEG Still Picture Compression Standard" by Gregory K. Wallace http://white.stanford.edu/~brian/psy221/reader/Wallace.JPEG.pdf 011 Lecture 2. Slide #19

6.02 Spring 2011

JPEG Results

The source image (left) was converted to JPEG (q=50) and then compared, pixel-by-pixel. The error is shown in the right-hand image (darker = larger error).

6.02 Spring 2011

http://en.wikipedia.org/wiki/JPEG