DIGITAL

COMMUNICATION
SYSTEMS

6.02 Spring 2011
Lecture #3

* Analog woes, the digital abstraction
» Basic digital recipes for sending information

Representing information with voltage

Representation of each point (%, y) on a B&W Picture:

0 volts: BLACK

1 volt: WHITE
0.37 volts: 37% Gray
etc.

Representation of a picture:
Scan points in some prescribed
raster order... generate voltage
waveform

Diagram of a Communication Channel

Sample clock, samples/symbol 2N possible
voltages
bits to /\/

Message bits in ——|

digitized sample

DAC

channel

ADC

N

Threshold

Clock and
data recovery

—>Message bits out

f

Sample clock, samples/symbol

System Building Blocks

» First let’ s introduce some processing blocks:

Let’ s build a system!

Analog Errors Accumulate

(1-Vy)*e Vint2e Vyt100¢g

aaa-aa

» If, say, € = 1%, then result might be 100% off (urk!)
* Accumulation is good for money, bad for errors

* As system builders we want to guarantee output
without having to worry about exact internal
details

— Bound number of processing stages in series OR

— Figure out a way to eliminate errors at each processing
stage. So how do we know which part of the signal is
message and which is error?

Analog Woes

12345678 —l INV |, Expected: .87654322
Vour =1 - Vi Actual: .87?7?7?????

The actual value of V,; depends on many factors:

* Manufacturing tolerance of internal components

* Environmental factors (temp, power supply voltage)
+ External influences (EM effects that affect voltages)
* How long we’re willing to wait

* How much we’re willing to spend

/L/ If we call it € maybe
Truth in advertising: Vg = (1 - V) £ € it'll seem small ©

Digital Signaling: Transmitting

To ensure we can distinguish signal from noise, we’ll encode
information using a fixed set of discrete values. For example,
in a binary signaling scheme we would use two voltages (VO
and V1) to represent the two binary values “0” and “1”.

» voltages near VO would be interpreted as representing “0”
* voltages near V1 would be interpreted as representing “1”
+ if we would like our encoding to work reliably with up to =N

volts of noise, then we can space VO and V1 far enough
apart so that even noisy signals are interpreted correctly

Digital Signaling: Receiving

We can specify the behavior of the receiver with a graph that

shows how incoming voltages are mapped to “0” and “1”.

The boundary between “0”
and “1” regions is called the
threshold voltage.

One possibility:

“1”—'

“0” T) T volts
VO V1-v0 V1
2
It would be hard to build a receiver that met this
specification since it’s very expensive and time consuming
to accurately measure voltages (e.g., those near the

threshold voltage).

Digital Signaling: Final Specification

N +N iR 1N +N
S]‘ ffffffffff SRR Btenoorrenes]‘ ---------- >
I i H
; i
i

Engineering tradeoffs when choosing F, the width in
volts of the forbidden zone:

Smaller F: allows larger N (better noise tolerance), but
receiver is more expensive to build (tighter
manufacturing and environmental tolerances).

Larger F: less noise tolerance, but cheaper, faster
receivers.

We Need a “Forbidden Zone”

We need to change our specification to include a “forbidden
zone” where there is no mapping between the continuous
input voltage and the discrete output:

Receiver can output any value
when the input voltage is in

“p this range.
2L

7 ; T T volts
VO ©oVI-VOo V1
2
Now the specification has some “elbow room” which allows for
manufacturing and environmental differences from receiver to

receiver.

Digital Signaling in 6.02

* In 6.02 we’ll represent voltage waveforms using
sequences of voltage samples

— Sample rate specifies the number of samples/second and
hence the time interval between samples, e.g., 4e6
samples/second (4 Msps) means the time interval between
samples is .25e-6 seconds (250ns).

— Each transmission of a single bit (“0” or “1”) will entail
sending some number of consecutive voltage samples (VO
or V1 volts); we’ll choose an appropriate number of
samples/bit in each application. Goal: smaller is better!

Continuous time

Discrete time - £
e "t sample interval
> time

Transmitting Information Clock Recovery @ Receiver

Messagebits | 0 | 1 [1 [o 1] 1] Receive samples ; gy

Transmit clock | | t t | | Inferred clock edges | t t
Transmit Samples ------------------------------------- Extrapolated Clock edges I I I
(Sample interval)(# samples/bit) (Sample period)(# samples/bit)
* Periodic events are timed by a clock signal * Receiver can infer presence of clock edge every time
— Sample period is controlled by the sample clock there’s a transition in the received samples.
— Transmit clock is a submultiple of the sample clock . Using sample period, extrapolate remaining edges
» Can receiver do its job if we only send samples and — Now know first and last sample for each bit

not the transmit clock?
— Save a wire and the power needed to drive clock signal

Choose “middle” sample to determine message bit

Two Issues for Recitation Summary
+ Don’t want receiver to extrapolate over too long an * Analog signaling has issues
interval — Real-world circuits & channels introduce errors
— Differences in xmit & rcv clock periods will eventually — Errors accumulate at each processing step

cause receiver to mis-sample the incoming waveform

Digital Abstraction
— Convention for analog signaling that lets us distinguish
message from errors; restore signal at each step
» If recovered message bit stream represents, say, 8- — Noise margins and forbidden zones
bit blocks of ASCII characters, how does receiver — Recover digital data by comparing against threshold
determine where the blocks start?
— Need out-of-band information about block starts

— Fix: ensure transitions every so often, even if transmitting
all O’s or all 1’s (key idea: recoding)

* Receiver design
— We don’t send xmit clock, receiver does clock recovery
— Fix: use special bit sequences to periodically synchronize
receiver’s notion of block boundaries. These sync
sequences must be unique (i.e., distinguishable from
ordinary message traffic).

— Determine bit from samples in “middle” of bit cell

