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•  Inputs & responses 
• Linear time-invariant systems 
• Modeling communications channels 
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Today: Modeling Channel Behavior 
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System Input and Response 

S x[n] y[n] 

input response 

A discrete-time signal is described by an infinite sequence 
of values, denoted by x[n], y[n], z[n], and so on.  The indices 
fall in the range －! to +!. 
 
In the diagram above, the sequence of output values y[n] is 
called the response of system S to the input sequence x[n]. 
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Unit Step and Unit Step Response 

A simple but useful discrete-time signal is the unit step, u[n], 
defined as 

u[n]= 0, n < 0
1, n ! 0

"
#
$

%$ S u[n] s[n] 

Unit step Unit step response 
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Unit Sample 

Another simple but useful discrete-time signal is the unit 
sample, δ[n], defined as 

![n]= u[n]!u[n!1]= 0, n " 0
1, n = 0

#
$
%

&%
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Unit Sample Response 

S δ[n] h[n] 

Unit sample Unit sample response 

The unit sample response of a system S is the response of 
the system to the unit sample input.  We will always 
denote the unit sample response as h[n]. 
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Unit-sample 
Decomposition 

A discrete-time signal can be decomposed 
into a sum of time-shifted, scaled unit 
samples. 
 
Example: in the figure, x[n] is the sum of  
x[-2]δ[n+2] + x[-1]δ[n+1] + … + x[2]δ[n-2]. 
 
In general: 

x[n]= x[k]![n! k]
k=!"

"

#

For any particular index, only 
one term of this sum is non-zero 
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Unit-step 
Decomposition 

Digital signaling waveforms are 
easily decomposed into time-
shifted, scaled unit steps (each 
transition corresponds to another 
shifted, scaled unit step). 
 
In this example, x[n] is the 
transmission of 1001110 using 4 
samples/bit: 

x[n]= u[n]!u[n! 4]+u[n!12]!u[n! 24]
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Time Invariant Systems 

Let y[n] be the response of S to input x[n]. 
 
If for all possible sequences x[n] and integers N 
 
 
 
 
 
 
then system S is said to be time invariant.  A time shift 
in the input sequence to S results in an identical time 
shift of the output sequence. 

S x[n-N] y[n-N] 
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Linear Systems 

Let y1[n] be the response of S to input x1[n] and y2[n] be 
the response to x2[n]. 
 
If 
 
 
 
 
 
then system S is said to be linear.  If the input is the 
weighted sum of several signals, the response is the 
superposition (i.e., weighted sum) of the response to 
those signals. 

S ax1[n]+ bx2[n] ay1[n]+ by2[n]
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Modeling LTI Systems 

If system S is both linear and time-invariant (LTI), then we can 
use the unit sample response to predict the response to any 
input waveform x[n]: 
 
 
 
 
 
 
 
Indeed, the unit sample response h[n] completely characterizes 
the LTI system S, so you often see 

S x[n]= x[k]![n! k]
k=!"

"

# y[n]= x[k]h[n! k]
k=!"

"

#

Sum of shifted, scaled unit samples Sum of shifted, scaled responses 

hS[n] x[n] y[n] 
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Properties of Convolution 

x[n]!h[n]" x[k]h[n# k]
k=#$

$

%

The summation is called the convolution sum, or more simply, 
the convolution of x[n] and h[n].  “ ” is the convolution operator. 
 
Convolution is commutative: 
 
 
Convolution is associative: 
 
 
Convolution is distributive: 

x[n]!h[n]= h[n]! x[n]

x[n]! h1[n]!h2[n]( ) = x[n]!h1[n]( )!h2[n]

x[n]! h1[n]+ h2[n]( ) = x[n]!h1[n]+ x[n]!h2[n]
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Parallel Interconnection of LTI Systems 

h1[n] 

x[n] 

y1[n] 

h2[n] 

+

y2[n] 

y[n] 

h1[n]+h2[n] x[n] y[n] 

y[n]= y1[n]+ y2[n]= x[n]!h1[n]+ x[n]!h2[n]= x[n]! h1[n]+ h2[n]( )
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Series Interconnection of LTI Systems 

h1[n] x[n] h2[n] y[n] 

y[n]= w[n]!h2[n]= x[n]!h1[n]( )!h2[n]= x[n]! h1[n]!h2[n]( )

h1[n] h2[n] x[n] y[n] 

w[n] 

h2[n] h1[n] x[n] y[n] 

h2[n] x[n] h1[n] y[n] 
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Channels as LTI Systems 

Many transmission channels can be effectively modeled as 
LTI systems.  When modeling transmissions, there are few 
simplifications we can make: 
 

y[n]= x[k]h[n! k]
k=!"

"

# = x[k]h[n! k]
k=0

"

# = x[k]h[n! k]
k=0

n

# = x[n! j]h[ j]
j=0

n

#

These two observations allow us to rework the convolution 
sum when it’s used to describe transmission channels: 

 
•  We’ll call the time transmissions start t=0; the signal before 

the start is 0.  So x[m] = 0 for m < 0. 
  

•  Real-word channels are causal: the output at any time 
depends on values of the input at only the present and 
past times.  So h[m] = 0 for m < 0. 
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Relationship between h[n] and s[n] 

We’re often given one of h[n] or s[n] and would like to 
know the other.  On slide #5 we saw 
 
 
 
Which for LTI systems implies 
 
 
 
In other words, the unit sample response is the first 
difference of the unit step response.  Also 

![n]= u[n]!u[n!1]

h[n]= s[n]! s[n!1]

s[n]= h[k]
k=!"

n

#
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             h[n]                   s[n]=u[n] h[n] 

6.02 Spring 2011 Lecture 4, Slide #18 

             h[n]                   s[n]=u[n] h[n] 
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             h[n]                   s[n]=u[n] h[n] 
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Transmission Over a Channel 
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Receiving the Response 

Digitization threshold = 0.5V 
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Faster Transmission 

Noise margin?  0.5 － y[28] 
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Computing y[28] using s4[n] 

We can use s4[n] to compute y[28] as follows: 

x[n]= u[n]!u[n! 4]+u[n!12]!u[n! 24]+u[n! 28]+...

y[n]= s4[n]! s4[n! 4]+ s4[n!12]! s4[n! 24]+ s4[n! 28]+...
So 

For n=28 

y[28]= s4[28]! s4[28! 4]+ s4[28!12]! s4[28! 24]+ s4[28! 28]+...
= s4[28]! s4[24]+ s4[16]! s4[4]+ s4[0]+...
=1.0!1.0+1.0! 0.8125+ 0.0625
= 0.25

So the noise margin is 0.5-0.25 = 0.25V. 

n s4[n] 

<0 0.0 

0 0.0625 

1 0.1875 

2 0.375 

3 0.625 

4 0.8125 

5 0.9375 

"6 1.0 
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Computing y[28] using h4[n] 

We can use h4[n] to compute y[28] as follows: first 
expand convolution sum keeping non-zero h4[n] 
terms (see bottom right, slide #15): 

y[n]= x[n]h4[0]+ x[n!1]h4[1]+ x[n! 2]h4[2]+ x[n!3]h4[3]+
x[n! 4]h4[4]+ x[n! 5]h4[5]+ x[n! 6]h4[6]

For n=28: 

This agrees with the previous calculation.  

n h4[n] 

<0 0.0 

0 0.0625 

1 0.125 

2 0.1875 

3 0.25 

4 0.1876 

5 0.125 

6 0.0625 

"7 0.0 

y[28]= x[28]h4[0]+ x[27]h4[1]+ x[26]h4[2]+ x[25]h4[3]+
x[24]h4[4]+ x[23]h4[5]+ x[22]h4[6]

= 0.0625+ 0+ 0+ 0+ 0+ 0.125+ 0.0625
= 0.25


