
6.02 Spring 2011 Lecture 4, Slide #1

6.02 Spring 2011
Lecture #4

•  Inputs & responses
• Linear time-invariant systems
• Modeling communications channels

6.02 Spring 2011 Lecture 4, Slide #2

Today: Modeling Channel Behavior

DAC

ADC

channel

N

Message bits in

Message bits out

2N possible
voltages

bits to
digitized sample

Sample clock, samples/symbol

N

Clock and
data recovery

Sample clock, samples/symbol

Threshold

6.02 Spring 2011 Lecture 4, Slide #3

System Input and Response

S x[n] y[n]

input response

A discrete-time signal is described by an infinite sequence
of values, denoted by x[n], y[n], z[n], and so on. The indices
fall in the range －! to +!.

In the diagram above, the sequence of output values y[n] is
called the response of system S to the input sequence x[n].

6.02 Spring 2011 Lecture 4, Slide #4

Unit Step and Unit Step Response

A simple but useful discrete-time signal is the unit step, u[n],
defined as

u[n]= 0, n < 0
1, n ! 0

"
#
$

%$ S u[n] s[n]

Unit step Unit step response

6.02 Spring 2011 Lecture 4, Slide #5

Unit Sample

Another simple but useful discrete-time signal is the unit
sample, δ[n], defined as

![n]= u[n]!u[n!1]= 0, n " 0
1, n = 0

#
$
%

&%

6.02 Spring 2011 Lecture 4, Slide #6

Unit Sample Response

S δ[n] h[n]

Unit sample Unit sample response

The unit sample response of a system S is the response of
the system to the unit sample input. We will always
denote the unit sample response as h[n].

6.02 Spring 2011 Lecture 4, Slide #7

Unit-sample
Decomposition

A discrete-time signal can be decomposed
into a sum of time-shifted, scaled unit
samples.

Example: in the figure, x[n] is the sum of
x[-2]δ[n+2] + x[-1]δ[n+1] + … + x[2]δ[n-2].

In general:

x[n]= x[k]![n! k]
k=!"

"

#

For any particular index, only
one term of this sum is non-zero

6.02 Spring 2011 Lecture 4, Slide #8

Unit-step
Decomposition

Digital signaling waveforms are
easily decomposed into time-
shifted, scaled unit steps (each
transition corresponds to another
shifted, scaled unit step).

In this example, x[n] is the
transmission of 1001110 using 4
samples/bit:

x[n]= u[n]!u[n! 4]+u[n!12]!u[n! 24]

6.02 Spring 2011 Lecture 4, Slide #9

Time Invariant Systems

Let y[n] be the response of S to input x[n].

If for all possible sequences x[n] and integers N

then system S is said to be time invariant. A time shift
in the input sequence to S results in an identical time
shift of the output sequence.

S x[n-N] y[n-N]

6.02 Spring 2011 Lecture 4, Slide #10

Linear Systems

Let y1[n] be the response of S to input x1[n] and y2[n] be
the response to x2[n].

If

then system S is said to be linear. If the input is the
weighted sum of several signals, the response is the
superposition (i.e., weighted sum) of the response to
those signals.

S ax1[n]+ bx2[n] ay1[n]+ by2[n]

6.02 Spring 2011 Lecture 4, Slide #11

Modeling LTI Systems

If system S is both linear and time-invariant (LTI), then we can
use the unit sample response to predict the response to any
input waveform x[n]:

Indeed, the unit sample response h[n] completely characterizes
the LTI system S, so you often see

S x[n]= x[k]![n! k]
k=!"

"

y[n]= x[k]h[n! k]
k=!"

"

#

Sum of shifted, scaled unit samples Sum of shifted, scaled responses

hS[n] x[n] y[n]

6.02 Spring 2011 Lecture 4, Slide #12

Properties of Convolution

x[n]!h[n]" x[k]h[n# k]
k=#$

$

%

The summation is called the convolution sum, or more simply,
the convolution of x[n] and h[n]. “ ” is the convolution operator.

Convolution is commutative:

Convolution is associative:

Convolution is distributive:

x[n]!h[n]= h[n]! x[n]

x[n]! h1[n]!h2[n]() = x[n]!h1[n]()!h2[n]

x[n]! h1[n]+ h2[n]() = x[n]!h1[n]+ x[n]!h2[n]

6.02 Spring 2011 Lecture 4, Slide #13

Parallel Interconnection of LTI Systems

h1[n]

x[n]

y1[n]

h2[n]

+

y2[n]

y[n]

h1[n]+h2[n] x[n] y[n]

y[n]= y1[n]+ y2[n]= x[n]!h1[n]+ x[n]!h2[n]= x[n]! h1[n]+ h2[n]()

6.02 Spring 2011 Lecture 4, Slide #14

Series Interconnection of LTI Systems

h1[n] x[n] h2[n] y[n]

y[n]= w[n]!h2[n]= x[n]!h1[n]()!h2[n]= x[n]! h1[n]!h2[n]()

h1[n] h2[n] x[n] y[n]

w[n]

h2[n] h1[n] x[n] y[n]

h2[n] x[n] h1[n] y[n]

6.02 Spring 2011 Lecture 4, Slide #15

Channels as LTI Systems

Many transmission channels can be effectively modeled as
LTI systems. When modeling transmissions, there are few
simplifications we can make:

y[n]= x[k]h[n! k]
k=!"

"

= x[k]h[n! k]
k=0

"

= x[k]h[n! k]
k=0

n

= x[n! j]h[j]
j=0

n

#

These two observations allow us to rework the convolution
sum when it’s used to describe transmission channels:

•  We’ll call the time transmissions start t=0; the signal before

the start is 0. So x[m] = 0 for m < 0.

•  Real-word channels are causal: the output at any time
depends on values of the input at only the present and
past times. So h[m] = 0 for m < 0.

j=n-k start at t=0 causal 6.02 Spring 2011 Lecture 4, Slide #16

Relationship between h[n] and s[n]

We’re often given one of h[n] or s[n] and would like to
know the other. On slide #5 we saw

Which for LTI systems implies

In other words, the unit sample response is the first
difference of the unit step response. Also

![n]= u[n]!u[n!1]

h[n]= s[n]! s[n!1]

s[n]= h[k]
k=!"

n

#

6.02 Spring 2011 Lecture 4, Slide #17

 h[n] s[n]=u[n] h[n]

6.02 Spring 2011 Lecture 4, Slide #18

 h[n] s[n]=u[n] h[n]

6.02 Spring 2011 Lecture 4, Slide #19

 h[n] s[n]=u[n] h[n]

6.02 Spring 2011 Lecture 4, Slide #20

Transmission Over a Channel

6.02 Spring 2011 Lecture 4, Slide #21

Receiving the Response

Digitization threshold = 0.5V

6.02 Spring 2011 Lecture 4, Slide #22

Faster Transmission

Noise margin? 0.5 － y[28]

6.02 Spring 2011 Lecture 4, Slide #23

Computing y[28] using s4[n]

We can use s4[n] to compute y[28] as follows:

x[n]= u[n]!u[n! 4]+u[n!12]!u[n! 24]+u[n! 28]+...

y[n]= s4[n]! s4[n! 4]+ s4[n!12]! s4[n! 24]+ s4[n! 28]+...
So

For n=28

y[28]= s4[28]! s4[28! 4]+ s4[28!12]! s4[28! 24]+ s4[28! 28]+...
= s4[28]! s4[24]+ s4[16]! s4[4]+ s4[0]+...
=1.0!1.0+1.0! 0.8125+ 0.0625
= 0.25

So the noise margin is 0.5-0.25 = 0.25V.

n s4[n]

<0 0.0

0 0.0625

1 0.1875

2 0.375

3 0.625

4 0.8125

5 0.9375

"6 1.0

6.02 Spring 2011 Lecture 4, Slide #24

Computing y[28] using h4[n]

We can use h4[n] to compute y[28] as follows: first
expand convolution sum keeping non-zero h4[n]
terms (see bottom right, slide #15):

y[n]= x[n]h4[0]+ x[n!1]h4[1]+ x[n! 2]h4[2]+ x[n!3]h4[3]+
x[n! 4]h4[4]+ x[n! 5]h4[5]+ x[n! 6]h4[6]

For n=28:

This agrees with the previous calculation.

n h4[n]

<0 0.0

0 0.0625

1 0.125

2 0.1875

3 0.25

4 0.1876

5 0.125

6 0.0625

"7 0.0

y[28]= x[28]h4[0]+ x[27]h4[1]+ x[26]h4[2]+ x[25]h4[3]+
x[24]h4[4]+ x[23]h4[5]+ x[22]h4[6]

= 0.0625+ 0+ 0+ 0+ 0+ 0.125+ 0.0625
= 0.25

