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System Input and Response

input response
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A discrete-time signal is described by an infinite sequence
of values, denoted by x[n], y[n], z[n], and so on. The indices
fall in the range —w to +o.

In the diagram above, the sequence of output values y[n] is
called the response of system S to the input sequence x[n].

Today: Modeling Channel Behavior
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Unit Step and Unit Step Response

A simple but useful discrete-time signal is the unit step, u[n],
defined as

Unit step Unit step response
0, n<0
uln]= . n=0 u[n] S s[n]
u[n] u[n—3]
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Unit Sample

Another simple but useful discrete-time signal is the unit
sample, d[n], defined as

0, n=0
oln]=uln]-uln-1]=
1, n=0
o[n] o[n+5]
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s s Decomposition
[~2)8[n+2]
: A discrete-time signal can be decomposed
zo et into a sum of time-shifted, scaled unit
dmLlias samples
7 1 o0 1 2 Example: in the figure, x[n] is the sum of
I[‘”{’["J x[-2]8[n+2] + x[-1]8[n+1] + ... + x[2]8[n-2].
T — In general:
z[1]é[n—1]
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z[2]d[n— 2]‘

x[n] = E x[k]18[n k]

k=—00

For any particular index, only
one term of this sum is non-zero

Unit Sample Response

Unit sample Unit sample response

6[n]—> S

_ hin]

The unit sample response of a system S is the response of
the system to the unit sample input. We will always
denote the unit sample response as h|n].

il Unit-step

171 THTNHTTH Decomposition
uln] Digital signaling waveforms are
T casily decomposed into time-
: it o - = i shifted, scaled unit steps (each
—uln—4] transition corresponds to another
shifted, scaled unit step).
TN 1o his example, xfn) is the
uln—12 transmission of 1001110 using 4
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Time Invariant Systems

Let y[n] be the response of S to input x[n].

If for all possible sequences x[n] and integers N

X[n-N] — § +——y[n-N]

then system S is said to be time invariant. A time shift
in the input sequence to S results in an identical time
shift of the output sequence.

Modeling LTI Systems

If system S is both linear and time-invariant (LTI), then we can
use the unit sample response to predict the response to any
input waveform x[n]:

Sum of shifted, scaled unit samples Sum of shifted, scaled responses
x[nl= Y x[kloln-kl— S F—ylnl= Y xlklhln-k]
k=—00 k=—

Indeed, the unit sample response h[n] completely characterizes
the LTI system S, so you often see

X[n]— hy[n] — yInl

Linear Systems

Let y,[n] be the response of S to input x,[n] and y,[n] be
the response to x,[n].

If

ax,[n]+bx,[n]— S — ay,[n]+by,[n]

then system S is said to be linear. If the input is the
weighted sum of several signals, the response is the
superposition (i.e., weighted sum) of the response to
those signals.

Properties of Convolution

©

x[n]*h[n]= E x[kh[n-k]

fk=—0

The summation is called the convolution sum, or more simply,
the convolution of x[n] and h[n]. “*” is the convolution operator.
Convolution is commutative:
x[n]*hln]=h[n]*x[n]
Convolution is associative:
x[n]* (hl[n] * hz[n]) = (x[n] * hl[n]) xhy[n]

Convolution is distributive:

x[n]=* (h1 [n]+ hz[n]) = x[n]*h[n]+ x[n]*h,[n]



Parallel Interconnection of LTI Systems

yaln]
h,[n]

X[n] — }* y[n]
h,[n]

ya[n]

ylnl= y,[n]+ y,[n]= x[n]* b [n]+ x[n)* hy[n] = x[n)* (k[n]+ hy[n])

X[n] — h,[n]+h,[n] — YNl

Channels as LTI Systems

Many transmission channels can be effectively modeled as
LTI systems. When modeling transmissions, there are few
simplifications we can make:

* We'll call the time transmissions start t=0; the signal before
the start is 0. So x[m] = 0 for m < O.

* Real-word channels are causal: the output at any time
depends on values of the input at only the present and
past times. So h[m] = 0 for m < O.

These two observations allow us to rework the convolution
sum when it’s used to describe transmission channels:

n

yinl= ) xlklhln~kl=y xlklhln - k]ﬂEX[k]h[n ~k]= Y xln~ jlhLj]
k=—0 Wa k=0 /L‘Fo

start at t=0 causal j=n-k

Series Interconnection of LTI Systems

w(n]

X[n]—s h,[n] h,[n] — y[nl

yln]=wln]=hy[n] = (x[n]*h[n]) = hy[n] = x[n]= (b (n]=h,[n])

X[n]— h,[n]*h,[n] > ¥I[nl

X[n]—  h,[n]*h,[n] — Y0l

X[]— h,[n] — h,[n] — Y[n]

Relationship between h[n] and s[n]

We’re often given one of h[n] or s[n] and would like to
know the other. On slide #5 we saw

oln]=uln]-un-1]
Which for LTI systems implies
h[n]=s[n]-s[n-1]

In other words, the unit sample response is the first
difference of the unit step response. Also

s[n]= i hlk]

k=—00



h[n]

by [n]

s[n]=u[n]*h[n]

uln] xhy[n]

h[n] s[n]=uln}*h[n]

uln] xhy [n]
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s[n]=u[n]*h[n]

uln] +hs [n]

hy[n] u[n] xhg [n]
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hy[n) uln] xhy[n]
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Transmission Over a Channel

z[n] at 8 samples/bit

 ylnl =aln] +hy )
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Receiving the Response

Digitization threshold = 0.5V

Computing y[28] using s,[n]

0.0625
0.1875
0.375
0.625
0.8125
0.9375
1.0

We can use s4[n] to compute y[28] as follows:
x[n]=uln]-uln-4]+uln-12]-u[n-24]+ul[n-28]+...

So
yln]=s,[n]-s,[n-4]+s,[n-12]-5,[n-24]+5,[n-28]+...

a p W N = O

v
[e)]

For n=28
V28] =s,[28]-5,[28 —4]+5,[28 -12] - 5,[28 - 24]+5,[28 - 28] +...
=5,[28]-s,[24]+5,[16]-5,[4]+5,[0]+...
=10-1.0+1.0-0.8125+0.0625
=0.25

So the noise margin is 0.5-0.25 = 0.25V.

Faster Transmission

x[n| at 4 samples/bit
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Noise margin? 0.5 — y[28]

Computing y[28] using h,[n]

0 0.0625
We can use hy[n| to compute y[28] as follows: first 1 0125
expand convolution sum keeping non-zero h,[n] 201875
terms (see bottom right, slide #15): 3 095
ylnl= x[nlh,[01+ x[n—11h, [1]+ x[n - 2]h,[ 2]+ x[n - 3], [3]+ 4 0O.1876
5 0.125
x[n—4]h,[4]+ x[n - 5]h,[5]+ x[n - 6]h,[6] oo
>7 0.0

For n=28:

y[28] = x[28]4,[0]+ x[271h,[1]+ x[26]h,[2] + x[25]h,[3] +
X[241h,[4]+ x[231h,[ 5]+ x[22]h,[6]

=0.0625+0+0+0+0+0.125+0.0625
=025

This agrees with the previous calculation. v



