
introduction to eecs ii
DIGITAL COMMUNICATION SYSTEMS

### 6.02 Spring 2011 Lecture \#4

- Inputs \& responses
- Linear time-invariant systems
- Modeling communications channels


## System Input and Response



A discrete-time signal is described by an infinite sequence of values, denoted by $x[n], y[n], z[n]$, and so on. The indices fall in the range $-\infty$ to $+\infty$.

In the diagram above, the sequence of output values $y[n]$ is called the response of system S to the input sequence $\mathrm{x}[\mathrm{n}]$.

## Today: Modeling Channel Behavior



Unit Step and Unit Step Response

A simple but useful discrete-time signal is the unit step, $\mathrm{u}[\mathrm{n}]$, defined as

$$
u[n]=\left\{\begin{array}{llc}
0, & n<0 \\
1, & n \geq 0 & \sim_{u} \\
\mathrm{u}[\mathrm{n}] \longrightarrow & \mathrm{S} & \text { Unit step } \\
\mathrm{s}[\mathrm{n}]
\end{array}\right.
$$




## Unit Sample

Another simple but useful discrete-time signal is the unit sample, $\delta[\mathrm{n}]$, defined as

$$
\delta[n]=u[n]-u[n-1]= \begin{cases}0, & n \neq 0 \\ 1, & n=0\end{cases}
$$



## Unit-sample Decomposition

A discrete-time signal can be decomposed into a sum of time-shifted, scaled unit samples.

Example: in the figure, $\mathrm{x}[\mathrm{n}]$ is the sum of $x[-2] \delta[n+2]+x[-1] \delta[n+1]+\ldots+x[2] \delta[n-2]$.

In general:

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

For any particular index, only one term of this sum is non-zero

## Unit Sample Response


$u[n]$

$-u[n-24]$



The unit sample response of a system S is the response of the system to the unit sample input. We will always denote the unit sample response as $\mathrm{h}[\mathrm{n}]$.

## Unit-step Decomposition

Digital signaling waveforms are easily decomposed into timeshifted, scaled unit steps (each transition corresponds to another shifted, scaled unit step).

In this example, $\mathrm{x}[\mathrm{n}]$ is the transmission of 1001110 using 4 samples/bit:
$x[n]=u[n]-u[n-4]+u[n-12]-u[n-24]$

## Time Invariant Systems

Let $y[n]$ be the response of $S$ to input $x[n]$.
If for all possible sequences $x[n]$ and integers $N$

then system S is said to be time invariant. A time shift in the input sequence to $S$ results in an identical time shift of the output sequence.

## Modeling LTI Systems

If system S is both linear and time-invariant (LTI), then we can use the unit sample response to predict the response to any input waveform $\mathrm{x}[\mathrm{n}]$ : Sum of shifted, scaled responses

$$
x[n]=\sum_{k=-\infty}^{\text {Sum of shifted, scaled unit samples } x[k] \delta[n-k] \longrightarrow \quad \mathrm{S}} \rightarrow y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Indeed, the unit sample response $\mathrm{h}[\mathrm{n}]$ completely characterizes

## Linear Systems

Let $y_{1}[n]$ be the response of $S$ to input $x_{1}[n]$ and $y_{2}[n]$ be the response to $\mathrm{x}_{2}[\mathrm{n}]$.

If

$$
a x_{1}[n]+b x_{2}[n] \longrightarrow \mathrm{S} \longrightarrow a y_{1}[n]+b y_{2}[n]
$$

then system S is said to be linear. If the input is the weighted sum of several signals, the response is the superposition (i.e., weighted sum) of the response to those signals.
the LTI system S , so you often see

$$
\mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{\mathrm{S}}[\mathrm{n}] \longrightarrow \mathrm{y}[\mathrm{n}]
$$

## Parallel Interconnection of LTI Systems


$y[n]=y_{1}[n]+y_{2}[n]=x[n] * h_{1}[n]+x[n] * h_{2}[n]=x[n] *\left(h_{1}[n]+h_{2}[n]\right)$

$$
\mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{1}[\mathrm{n}]+\mathrm{h}_{2}[\mathrm{n}] \longrightarrow \mathrm{y}[\mathrm{n}]
$$

## Channels as LTI Systems

Many transmission channels can be effectively modeled as LTI systems. When modeling transmissions, there are few simplifications we can make:

- We'll call the time transmissions start $\mathrm{t}=0$; the signal before the start is 0 . So $\mathrm{x}[\mathrm{m}]=0$ for $\mathrm{m}<0$.
- Real-word channels are causal: the output at any time depends on values of the input at only the present and past times. So $\mathrm{h}[\mathrm{m}]=0$ for $\mathrm{m}<0$.

These two observations allow us to rework the convolution sum when it's used to describe transmission channels:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{\text {start at } \mathrm{t}=0}^{\sum_{\text {6.0 Spring } 2011}^{\infty} x[k] h[n-k]}=\sum_{k=0}^{n} x[k] h[n-k]=\sum_{j=0}^{n} x[n-j] h[j]
$$

## Series Interconnection of LTI Systems

$$
\begin{aligned}
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{1}[\mathrm{n}] \xrightarrow{\mathrm{w}[\mathrm{n}]} \mathrm{h}_{2}[\mathrm{n}] \longrightarrow \mathrm{y}[\mathrm{n}] \\
& y[n]=w[n] * h_{2}[n]=\left(x[n] * h_{1}[n]\right) * h_{2}[n]=x[n] *\left(h_{1}[n] * h_{2}[n]\right) \\
& \mathrm{x}[\mathrm{n}] \longrightarrow \quad \mathrm{h}_{1}[\mathrm{n}] * \mathrm{~h}_{2}[\mathrm{n}] \longrightarrow \mathrm{y}[\mathrm{n}] \\
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{2}[\mathrm{n}] * \mathrm{~h}_{1}[\mathrm{n}] \longrightarrow \mathrm{y}[\mathrm{n}] \\
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{2}[\mathrm{n}] \longrightarrow \mathrm{h}_{1}[\mathrm{n}] \longrightarrow \mathrm{y}[\mathrm{n}]
\end{aligned}
$$

## Relationship between $\mathrm{h}[\mathrm{n}]$ and $\mathrm{s}[\mathrm{n}]$

We're often given one of $\mathrm{h}[\mathrm{n}]$ or $\mathrm{s}[\mathrm{n}]$ and would like to know the other. On slide \#5 we saw

$$
\delta[n]=u[n]-u[n-1]
$$

Which for LTI systems implies

$$
h[n]=s[n]-s[n-1]
$$

In other words, the unit sample response is the first difference of the unit step response. Also

$$
S[n]=\sum_{k=-\infty}^{n} h[k]
$$


h [n]

6.02 Spring 2011
h [n]
$s[n]=u[n] * h[n]$

$s[n]=u[n] * h[n]$


Lecture 4, Slide \#17

Transmission Over a Channel



## Receiving the Response



Digitization threshold $=0.5 \mathrm{~V}$

## Faster Transmission



6.02 Spring 201

Noise margin? $0.5-y[28]$ Lecture 4, slide \#22

## Computing $\mathrm{y}[28]$ using $\mathrm{s}_{4}[\mathrm{n}]$

We can use $\mathrm{s}_{4}[\mathrm{n}]$ to compute $\mathrm{y}[28]$ as follows:

$$
x[n]=u[n]-u[n-4]+u[n-12]-u[n-24]+u[n-28]+\ldots
$$

So

| n | $\mathrm{s}_{4}[\mathrm{n}]$ |
| :---: | :--- |
| $<0$ | 0.0 |
| 0 | 0.0625 |
| 1 | 0.1875 |
| 2 | 0.375 |
| 3 | 0.625 |
| 4 | 0.8125 |
| 5 | 0.9375 |
| $\geq 6$ | 1.0 |

For n=28

$$
\begin{aligned}
y[28] & =s_{4}[28]-s_{4}[28-4]+s_{4}[28-12]-s_{4}[28-24]+s_{4}[28-28]+\ldots \\
& =s_{4}[28]-s_{4}[24]+s_{4}[16]-s_{4}[4]+s_{4}[0]+\ldots \\
& =1.0-1.0+1.0-0.8125+0.0625 \\
& =0.25
\end{aligned}
$$

So the noise margin is $0.5-0.25=0.25 \mathrm{~V}$.

## Computing $y[28]$ using $h_{4}[n]$

We can use $h_{4}[n]$ to compute $y[28]$ as follows: first expand convolution sum keeping non-zero $h_{4}[n]$ terms (see bottom right, slide \#15):

$$
\begin{gathered}
y[n]=x[n] h_{4}[0]+x[n-1] h_{4}[1]+x[n-2] h_{4}[2]+x[n-3] h_{4}[3]+ \\
x[n-4] h_{4}[4]+x[n-5] h_{4}[5]+x[n-6] h_{4}[6]
\end{gathered}
$$

## $\mathrm{h}_{4}[\mathrm{n}]$

000
$\begin{array}{lll}0 & 0.0625\end{array}$
$\begin{array}{ll}1 & 0.125\end{array}$
20.1875

| 3 | 0.25 |
| :--- | :--- |

40.1876
50.125
$\begin{array}{ll}6 & 0.0625\end{array}$
For $\mathrm{n}=28$ :


$$
\begin{aligned}
y[28]= & x[28] h_{4}[0]+x[27] h_{4}[1]+x[26] h_{4}[2]+x[25] h_{4}[3]+ \\
& x[24] h_{4}[4]+x[23] h_{4}[5]+x[22] h_{4}[6] \\
= & 0.0625+0+0+0+0+0.125+0.0625 \\
= & 0.25
\end{aligned}
$$

This agrees with the previous calculation.

