
6.02 Spring 2011 Lecture 5, Slide #1

6.02 Spring 2011
Lecture #5

•  Intersymbol interference
• Deconvolution
• Stability & noise, approximate deconvolvers

6.02 Spring 2011 Lecture 5, Slide #2

 Transmission Over a Channel

Bits to
volts

1001110101 y[n]

6.02 Spring 2011 Lecture 5, Slide #3

Convolution sum: “flip and slide”

x[n]

Visual representation of convolution sum: do a horizontal flip of
the of graph of h[n], then slide along under x[n].

To compute y[m], slide flipped h[n] until h[0] is under x[m], then
compute sum of element-by-element product of the two
sequences.

y[28] = x[28]h[0] + x[27]h[1] + … + x[22]h[6]

h[0] h[6]
h[n]
flipped
& slid

6.02 Spring 2011 Lecture 5, Slide #4

Intersymbol Interference (ISI)

“1” “0” “1”

Issue:
If we send a small number of
samples/bit, the active
portion of h[n] may cover
more than one bit cell when
doing convolution sum.

Result:

y[n] values for a particular bit
cell include contributions
from neighboring cells.

Example: y[28] is the lowest
voltage received for the “0” bit,
but includes contributions
from the neighboring “1” bits.

6.02 Spring 2011 Lecture 5, Slide #5

Given h[n], how bad is ISI?

Recipe:
1.  Compute B, the number bits “covered” by h[n]. Let N =

samples/bit

2.  Generate a test pattern that contains all possible combinations
of B bits – want all possible combinations of neighboring cells.
If B is big, randomly choose a large number of combinations.

3.  Transmit the test pattern over the channel (2N*B samples)

4.  Instead of one long plot of y[n], plot the response as an eye
diagram:
a.  break the plot up into short segments each containing

2N+1 samples, starting at sample 0, N, 2N, 3N, …
b.  plot all the short segments on top of each other

B = length of active portion of h[n]
N

!

"!
#

$#
+ 2

6.02 Spring 2011 Lecture 5, Slide #6

Eye Diagram Example

Using h4[n] and samples_per_bit=4: B = 3

000 100 010 110 001 101 011 111

Eye diagrams make it easy to find the worst-case
signaling conditions at the receiving end.

6.02 Spring 2011 Lecture 5, Slide #7

“Width” of Eye

“width” of eye
(as in “eye wide open”)

Worst-case “1”

Worst-case “0”

To maximize noise margins:
 Pick the best sample point → widest point in the eye
 Pick the best digitization threshold → half-way across width

Both plots show the same y[n]

6.02 Spring 2011 Lecture 5, Slide #8

Choosing Samples/Bit

Given h[n], you can use the eye diagram to pick the
number of samples transmitted for each bit (N):

Reduce N until you reach the noise margin you feel
is the minimum acceptable value.

Oops, no eye!

6.02 Spring 2011 Lecture 5, Slide #9

Example: “fast” channel
h

[n
]
fo

r
a
ct

u
a
l
fo

r
a
ct

u
a
l
ch

a
n

n
el

s
ex

te
n

d
 t

o
+
!

,
a
lt

h
ou

gh
 v

a
lu

es
 g

et

va
n

is
h

in
g

sm
a
ll
.
 F

or
 p

ra
ct

ic
a
li
ty

,
w

e
tr

u
n

ca
te

 w
h

en
 t

er
m

s
fa

ll
 b

el
ow

 a

ce
rt

a
in

 v
a
lu

e.

6.02 Spring 2011 Lecture 5, Slide #10

Example: “slow channel”

6.02 Spring 2011 Lecture 5, Slide #11

Example: “ringing” channel

6.02 Spring 2011 Lecture 5, Slide #12

Can We Recover From ISI?

After all, in a perfect world (no noise), no information has been
lost, only spread out over many samples.

Given y[n] and h[n], can we develop an estimate w[n] for the
actual input waveform x[n]? We could, of course, easily receive
x[n]!

want

have

6.02 Spring 2011 Lecture 5, Slide #13

Difference Equation for w[n]

If w[n] was a perfect estimate of x[n], it would satisfy:

y[n]= w[n]h[0]+w[n!1]h[1]+w[n! 2]h[2]+...+w[n!K]h[K]
Simplifying assumption: h[K] is last non-zero element

Let’s solve this for w[n]:

w[n]= 1
h[0]

y[n]! w[n!1]h[1]+w[n! 2]h[2]+...+w[n!K]h[K]()()

Given y[n] and h[n], we can
incrementally compute
sequence w[n] using a
straightforward “plug and
chug” approach:

w[0]= 1
h[0]

y[0]()

w[1]= 1
h[0]

y[1]!w[0]h[1]()

w[2]= 1
h[0]

y[2]!w[1]h[1]!w[0]h[2]()

h[i]= 0 i < 0 or i > K
w[j]= 0 j < 0

6.02 Spring 2011 Lecture 5, Slide #14

What if h[0]=0?

w[n]= 1
h[0]

y[n]! w[n!1]h[1]+w[n! 2]h[2]+...+w[n!K]h[K]()()

Oops! Division by 0 isn’t a good idea…

Zeros at the beginning h[n] represent a channel with a delay: m
zeros would mean a m-sample delay. We can eliminate the
delay without affecting our estimate for x[n]. So

1.  Count the number of zeros at the front of h[n] = m
2.  Eliminate the first m elements of h[n], and

eliminate the first m elements of y[n]
3.  Now use the equation above on the shortened h[n] and y[n]

6.02 Spring 2011 Lecture 5, Slide #15

Deconvolution Example

???
(hint: see slide #10)

6.02 Spring 2011 Lecture 5, Slide #16

Sensitivity to Noise

w[0]= 1
h[0]

y[0]+!() !
h[0]

w[1]= 1
h[0]

y[1]!w[0]h[1]() !
!
h[0]

h[1]
h[0]

w[2]= 1
h[0]

y[2]!w[1]h[1]!w[0]h[2]() !
!
h[0]

h[1]
h[0]
"

#
$

%

&
'

2

!
!
h[0]

h[2]
h[0]

Let’s consider what happens if some small amount of noise (ε)
is added to the first sample of the response (y[0]):

Estimate Error

Question: is the error growing as we compute more w’s?

Answer: depends on h[0] and the ratios h[m]/h[0]. Small

values of h[0] and (h[m]/h[0]) > 1 are troublesome…

6.02 Spring 2011 Lecture 5, Slide #17

Noisy Deconvolution Example

add 0.5mV of random noise

Urk!
6.02 Spring 2011 Lecture 5, Slide #18

Stability Criterion

The notes have a derivation of the following sufficient (very
conservative) condition that will ensure the stability of the
deconvolver operating on a noisy y[n]:

h[m]
h[0]m=1

K

! <1 or, perhaps more usefully h[m]
m=1

K

! < h[0]

What if my h[n] doesn’t meet this criterion?

Make a new “approximate” h[n] that does! Combine samples
at the beginning of h[n] to make a bigger h[0].

6.02 Spring 2011 Lecture 5, Slide #19

Example Approximate hSLOW[n]

Approximation: combine first 5 samples of hSLOW[n]

6.02 Spring 2011 Lecture 5, Slide #20

(Less) Noisy Deconvolution Example

same 0.5mV of random noise

