

6.02 Spring 2011 Lecture \#5

- Intersymbol interference
- Deconvolution
- Stability \& noise, approximate deconvolvers

Convolution sum: "flip and slide"

$$
\mathrm{y}[28]=\mathrm{x}[28] \mathrm{h}[0]+\mathrm{x}[27] \mathrm{h}[1]+\ldots+\mathrm{x}[22] \mathrm{h}[6]
$$

Visual representation of convolution sum: do a horizontal flip of the of graph of $\mathrm{h}[\mathrm{n}]$, then slide along under $\mathrm{x}[\mathrm{n}]$.

To compute $y[m]$, slide flipped $\mathrm{h}[\mathrm{n}]$ until $\mathrm{h}[0]$ is under $\mathrm{x}[\mathrm{m}]$, then compute sum of element-by-element product of the two sequences.

Transmission Over a Channel

Intersymbol Interference (ISI)

ssue:
If we send a small number of samples/bit, the active portion of $\mathrm{h}[\mathrm{n}]$ may cover more than one bit cell when doing convolution sum.

Result:
$\mathrm{y}[\mathrm{n}]$ values for a particular bit cell include contributions from neighboring cells.

Example: $y[28]$ is the lowest voltage received for the " 0 " bit, but includes contributions from the neighboring " 1 " bits.

Given $\mathrm{h}[\mathrm{n}$], how bad is ISI?

Recipe:

1. Compute B , the number bits "covered" by $\mathrm{h}[\mathrm{n}]$. Let $\mathrm{N}=$ samples/bit

$$
B=\left\lfloor\frac{\text { length of active portion of } \mathrm{h}[\mathrm{n}]}{\mathrm{N}}\right\rfloor+2
$$

2. Generate a test pattern that contains all possible combinations of B bits - want all possible combinations of neighboring cells. If B is big, randomly choose a large number of combinations.
3. Transmit the test pattern over the channel ($2^{\mathrm{N} *} \mathrm{~B}$ samples)
4. Instead of one long plot of $y[n]$, plot the response as an eye diagram:
a. break the plot up into short segments each containing $2 \mathrm{~N}+1$ samples, starting at sample $0, \mathrm{~N}, 2 \mathrm{~N}, 3 \mathrm{~N}, .$.
b. plot all the short segments on top of each other
"Width" of Eye

To maximize noise margins:
Pick the best sample point \rightarrow widest point in the eye
Pick the best digitization threshold \rightarrow half-way across width

Eye Diagram Example

Using $h_{4}[n]$ and samples_per_bit=4: $\quad B=3$

Eye diagrams make it easy to find the worst-case signaling conditions at the receiving end.
6.02 Spring 2011

Lecture 5, Slide \#6

Choosing Samples/Bit

Given h[n], you can use the eye diagram to pick the number of samples transmitted for each bit (N):

Reduce N until you reach the noise margin you feel is the minimum acceptable value.

Example: "fast" channel

Example: "slow channel"

Example: "ringing" channel

Can We Recover From ISI?

After all, in a perfect world (no noise), no information has been lost, only spread out over many samples.

Given $y[n]$ and $h[n]$, can we develop an estimate $w[n]$ for the actual input waveform $x[n]$? We could, of course, easily receive $\mathrm{x}[\mathrm{n}]$!

Difference Equation for w[n]

If $w[n]$ was a perfect estimate of $x[n]$, it would satisfy:

$$
\begin{aligned}
y[n]= & w[n] h[0]+w[n-1] h[1]+w[n-2] h[2]+\ldots+w[n-K] h[K] \\
& \text { Simplifying assumption: } \mathrm{h}[\mathrm{~K}] \text { is last non-zero element } J
\end{aligned}
$$

Let's solve this for $\mathrm{w}[\mathrm{n}]$:

$$
w[n]=\frac{1}{h[0]}(y[n]-(w[n-1] h[1]+w[n-2] h[2]+\ldots+w[n-K] h[K]))
$$

Given $\mathrm{y}[\mathrm{n}]$ and $\mathrm{h}[\mathrm{n}]$, we can $w[0]=\frac{1}{h[0]}(y[0]) \quad \begin{array}{cc}h[i]=0 & i<0 \text { or } i>K \\ w[j]=0 & j<0\end{array}$ incrementally compute sequence $w[n]$ using a straightforward "plug and

$$
w[1]=\frac{1}{h[0]}(y[1]-w[0] h[1])
$$

$$
w[2]=\frac{1}{h[0]}(y[2]-w[1] h[1]-w[0] h[2])
$$

Deconvolution Example

$y[n]$

(hint: see slide \#10)

What if $\mathrm{h}[0]=0$?

$w[n]=\frac{1}{h[0]}(y[n]-(w[n-1] h[1]+w[n-2] h[2]+\ldots+w[n-K] h[K]))$

Oops! Division by 0 isn't a good idea...
Zeros at the beginning $h[n]$ represent a channel with a delay: m zeros would mean a m-sample delay. We can eliminate the delay without affecting our estimate for $\mathrm{x}[\mathrm{n}]$. So

1. Count the number of zeros at the front of $h[n]=m$
2. Eliminate the first m elements of $h[n]$, and eliminate the first m elements of $y[n]$
3. Now use the equation above on the shortened $h[n]$ and $y[n]$

Sensitivity to Noise

Let's consider what happens if some small amount of noise (ε) is added to the first sample of the response (y[0]):

\[

\]

Question: is the error growing as we compute more w's?
Answer: depends on $\mathrm{h}[0]$ and the ratios $\mathrm{h}[\mathrm{m}] / \mathrm{h}[0]$. Small values of $\mathrm{h}[0]$ and $(\mathrm{h}[\mathrm{m}] / \mathrm{h}[0])>1$ are troublesome...

Noisy Deconvolution Example

Urk!

Example Approximate $\mathbf{h s L o w}[\mathrm{n}]$

Approximation: combine first 5 samples of $\mathrm{h}_{\text {SLow }}[\mathrm{n}]$

Stability Criterion

The notes have a derivation of the following sufficient (very conservative) condition that will ensure the stability of the deconvolver operating on a noisy y[n]:

$$
\sum_{m=1}^{K}\left|\frac{h[m]}{h[0]}\right|<1 \quad \text { or, perhaps more usefully } \quad \sum_{m=1}^{K}|h[m]|<|h[0]|
$$

What if my h[n] doesn't meet this criterion?
Make a new "approximate" $\mathrm{h}[\mathrm{n}]$ that does! Combine samples at the beginning of $\mathrm{h}[\mathrm{n}]$ to make a bigger $\mathrm{h}[0]$.

(Less) Noisy Deconvolution Example

