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6.02 Spring 2011 
Lecture #5 

•  Intersymbol interference 
• Deconvolution 
• Stability & noise, approximate deconvolvers 
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  Transmission Over a Channel 

Bits to 
volts 

1001110101 y[n] 
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Convolution sum: “flip and slide” 

x[n] 

Visual representation of convolution sum: do a horizontal flip of 
the of graph of h[n], then slide along under x[n]. 
 
To compute y[m], slide flipped h[n] until h[0] is under x[m], then 
compute sum of element-by-element product of the two 
sequences. 

y[28] = x[28]h[0] + x[27]h[1] + … + x[22]h[6] 

h[0] h[6] 
h[n] 
flipped 
& slid 
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Intersymbol Interference (ISI) 

“1” “0” “1” 

Issue: 
If we send a small number of 
samples/bit, the active 
portion of h[n] may cover 
more than one bit cell when 
doing convolution sum. 

 
Result:  

y[n] values for a particular bit 
cell include contributions 
from neighboring cells. 

 
Example: y[28] is the lowest 
voltage received for the “0” bit, 
but includes contributions 
from the neighboring “1” bits. 
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Given h[n], how bad is ISI? 

Recipe: 
1.  Compute B, the number bits “covered” by h[n].  Let N = 

samples/bit 
 
 

2.  Generate a test pattern that contains all possible combinations 
of B bits – want all possible combinations of neighboring cells.  
If B is big, randomly choose a large number of combinations. 
 

3.  Transmit the test pattern over the channel (2N*B samples) 
 

4.  Instead of one long plot of y[n], plot the response as an eye 
diagram: 
a.  break the plot up into short segments each containing 

2N+1 samples, starting at sample 0, N, 2N, 3N, … 
b.  plot all the short segments on top of each other 

B = length of active portion of h[n]
N
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Eye Diagram Example 

Using h4[n] and samples_per_bit=4:  B = 3 

000 100 010 110 001 101 011 111 

Eye diagrams make it easy to find the worst-case 
signaling conditions at the receiving end. 
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“Width” of Eye 

“width” of eye 
(as in “eye wide open”) 

Worst-case “1” 

Worst-case “0” 

To maximize noise margins: 
  Pick the best sample point → widest point in the eye 
  Pick the best digitization threshold → half-way across width 

Both plots show the same y[n] 
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Choosing Samples/Bit 

Given h[n], you can use the eye diagram to pick the 
number of samples transmitted for each bit (N): 
 
Reduce N until you reach the noise margin you feel 
is the minimum acceptable value. 

Oops, no eye! 
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Example: “fast” channel 
h
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Example: “slow channel” 
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Example: “ringing” channel 
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Can We Recover From ISI? 

After all, in a perfect world (no noise), no information has been 
lost, only spread out over many samples. 
 
Given y[n] and h[n], can we develop an estimate w[n] for the 
actual input waveform x[n]?  We could, of course, easily receive 
x[n]! 

want 

have 
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Difference Equation for w[n] 

If w[n] was a perfect estimate of x[n], it would satisfy: 

y[n]= w[n]h[0]+w[n!1]h[1]+w[n! 2]h[2]+...+w[n!K ]h[K ]
Simplifying assumption: h[K] is last non-zero element 

Let’s solve this for w[n]: 

w[n]= 1
h[0]

y[n]! w[n!1]h[1]+w[n! 2]h[2]+...+w[n!K ]h[K ]( )( )

Given y[n] and h[n], we can 
incrementally compute 
sequence w[n] using a 
straightforward “plug and 
chug” approach: 

w[0]= 1
h[0]

y[0]( )

w[1]= 1
h[0]

y[1]!w[0]h[1]( )

w[2]= 1
h[0]

y[2]!w[1]h[1]!w[0]h[2]( )

h[i]= 0 i < 0 or i > K
w[ j]= 0 j < 0
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What if h[0]=0? 

w[n]= 1
h[0]

y[n]! w[n!1]h[1]+w[n! 2]h[2]+...+w[n!K ]h[K ]( )( )

Oops!  Division by 0 isn’t a good idea… 
 
Zeros at the beginning h[n] represent a channel with a delay: m 
zeros would mean a m-sample delay.  We can eliminate the 
delay without affecting our estimate for x[n].  So 
 
1.  Count the number of zeros at the front of h[n] = m 
2.  Eliminate the first m elements of h[n], and 

eliminate the first m elements of y[n] 
3.  Now use the equation above on the shortened h[n] and y[n] 
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Deconvolution Example 

??? 
(hint: see slide #10) 
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Sensitivity to Noise 

w[0]= 1
h[0]

y[0]+!( ) !
h[0]

w[1]= 1
h[0]

y[1]!w[0]h[1]( ) !
!
h[0]

h[1]
h[0]

w[2]= 1
h[0]

y[2]!w[1]h[1]!w[0]h[2]( ) !
!
h[0]

h[1]
h[0]
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h[2]
h[0]

Let’s consider what happens if some small amount of noise (ε) 
is added to the first sample of the response (y[0]): 

Estimate Error 

Question: is the error growing as we compute more w’s? 
 
Answer:  depends on h[0] and the ratios h[m]/h[0].  Small 

values of h[0] and (h[m]/h[0]) > 1 are troublesome… 
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Noisy Deconvolution Example 

add 0.5mV of random noise 

Urk! 
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Stability Criterion 

The notes have a derivation of the following sufficient (very 
conservative) condition that will ensure the stability of the 
deconvolver operating on a noisy y[n]: 

h[m]
h[0]m=1

K

! <1 or, perhaps more usefully h[m]
m=1

K

! < h[0]

What if my h[n] doesn’t meet this criterion? 
 
Make a new “approximate” h[n] that does!  Combine samples 
at the beginning of h[n] to make a bigger h[0]. 
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Example Approximate hSLOW[n] 

Approximation: combine first 5 samples of hSLOW[n] 
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(Less) Noisy Deconvolution Example 

same 0.5mV of random noise 


