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6.02 Spring 2011 
Lecture #6 

• Mean, power, energy, SNR 
• Metrics for random processes 
• Normal PDF, CDF 
• Calculating p(error), BER vs. SNR 
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Bad Things Happen to Good Signals 

+ ynf[n] 

noise[n] 

y[n] 

Noise, broadly construed, is any change to the signal from its 
expected value, x[n] h[n], when it arrives at the receiver. 
 
We’ll look at additive noise and assume the noise in our 
systems is independent in value and timing from the nominal 
signal, ynf[n], and that the noise can be described by a random 
variable with a known probability distribution. 
 
We’ll model the received signal as ynf[n] + noise[n]. 

“noise-free” signal 
at receiver, i.e., 
x[n] h[n] 

Independent random noise 

“noisy” signal 
receiver must 
process 
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Definition of Mean, Power, Energy 

Some interesting statistical metrics for x[n]: 
 
Mean: 
 
 
Power: 
 
 
Energy: 
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In analyzing our systems, we often use metrics 
where the mean has been factored out. 

Slides 3-16 
derived from 
6.02 slides by 
Mike Perrott 
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Signal-to-Noise Ratio (SNR) 

The Signal-to-Noise ratio (SNR) is useful in 
judging the impact of noise on system 
performance: 

SNR =
!Psignal
!Pnoise

SNR is often measured in decibels (dB): 

SNR (db) =10 log
!Psignal
!Pnoise
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SNR Example 

Changing the amplification factor 
(gain) A leads to different SNR values: 
•  Lower A → lower SNR 
•  Signal quality degrades with 

lower SNR 
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Analysis of Random Processes 

• Random processes, such as noise, 
take on different sequences for 
different trials 

– Think of trials as different 
measurement intervals from the 
same experimental setup (as in lab) 
 

• For a given trial, we can apply our 
standard analysis tools and metrics 

– mean and power calculations, etc... 
 

• When trying to analyze the ensemble 
(i.e., all trials) of possible outcomes, 
we find ourselves in need of new tools 
and metrics 
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Stationary and Ergodic Random Processes 

Stationary 
statistical behavior is 
independent of shifts in 
time in a given trial.  Implies 
noise[k] is statistically 
indistinguishable from 
noise[k+N] 
 

Ergodic 
statistical sampling can be 
performed at one sample 
time (i.e., n=k) across 
different trials, or across 
different sample times of the 
same trial with no change in 
the measured result 
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Experiment to See Statistical Distribution 

Experiment: create histograms 
of sample values from trials of 
increasing lengths. 
 
Assumption of stationarity 
implies histogram should 
converge to a shape known as a 
probability density function 
(PDF) 
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Formalizing the PDF Concept 

Define x as a random 
variable whose PDF has 
the same shape as the 
histogram we just 
obtained. 
 
Denote the PDF of x as 
fx(x) and scale fx(x) such 
that its overall area is 
1: 

fx!"

"

# (x) =1
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Formalizing Probability 

The probability that random variable x takes on a value in the 
range of x1 to x2 is calculated from the PDF of x as: 

p(x1 ! x ! x2 ) = fxx1

x2" (x)dx

Note that probability values are always in the range of 0 to 1.  
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Example Probability Calculation 

This shape is 
referred to as a 
uniform PDF. 

Verify that overall area is 1: 

fx!"

"

# (x)dx = 0.5dx =1
0

2
#

Probability that x takes on a value between 0.5 and 1: 

p(0.5! x !1.0) = 0.5dx = 0.25
0.5

1
"
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Examination of Sample Value Distribution 

Assumption of ergodicity implies the value occurring at a given 
time sample, noise[k], across many different trials has the 
same PDF as estimated in our previous experiment of many 
time samples and one trial. 
 
Thus we can model noise[k] using the random variable x. 
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Probability Calculation 

In a given trial, the probability that noise[k] takes on a value in 
the range of x1 to x2 is computed as 

p(x1 ! x ! x2 ) = fx (x)dxx1

x2"
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Mean and Variance 

The mean of a random variable x, μx, corresponds to its average 
value and computed as: 

µx = x  fx!"

"

# (x)dx

The variance of a random variable x, σx
2, gives an indication of 

its variability and is computed as: 

! x
2 = (x !µx )

2 fx!"

"

# (x)dx
Compare with 
power calculation 
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Visualizing Mean and Variance 

Changes in mean shift the 
center of mass of PDF 

Changes in variance narrow 
or broaden the PDF (but 
area is always equal to 1) 
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Example Mean and Variance Calculation 

Mean: 

Variance: 

µx = x  fx!"
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Noise on a Communication Channel 
The net noise observed at the receiver is often the sum of many 
small, independent random contributions from the electronics 
and transmission medium.  If these independent random 
variables have finite mean and variance, the Central Limit 
Theorem says their sum will be normally distributed. 
 
The figure below shows the histograms of the results of 10,000 
trials of summing 100 random samples draw from [-1,1] using 
two different distributions. 

1 -1 

1 

1 -1 

0.5 Triangular 
PDF 

Uniform 
PDF 
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The Normal Distribution 

A normal or Gaussian 
distribution with mean μ and 
variance σ2 has a PDF 
described by 

fx (x) =
1
2!" 2

e
! x!µ( )2

2! 2

The normal distribution with 
μ=0 and σ2=1 is called the 
“standard” or “unit” normal. 

6.02 Spring 2011 Lecture 6, Slide #19 

Cumulative Distribution Function 

When analyzing the effects of Gaussian noise, we’ll often want to 
determine the probability that the noise is larger or smaller than 
a given value x0.  From slide #10: 

p(x ! x0 ) =
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e
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2" 2
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Where Φμ,σ(x) is the cumulative distribution 
function (CDF) for the normal distribution 
with mean μ and variance σ2.  The CDF for 
the unit normal is usually written as just Φ(x). 
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!(x) = CDF for Unit Normal PDF 

For Python hackers: 

from math import sqrt 
from scipy.special import erf 
 
# CDF for Normal PDF 
def Phi(x,mu=0,sigma=1): 
  t = erf((x-mu)/(sigma*sqrt(2))) 
  return 0.5 + 0.5*t 

lim
x!"

#(x) =1

lim
x!"#

$(x) = 0

!(0) = 0.5

erf(x) = 2
!

e!t
2

dt
0

x
"

Most math libraries don’t 
provide Φ(x) but they do have a 
related function, erf(x), the 
error function: 
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Bit Error Rate 

The bit error rate (BER), or perhaps more appropriately the bit 
error ratio, is the number of bits received in error divided by the 
total number of bits transferred.  We can estimate the BER by 
calculating the probability that a bit will be incorrectly received 
due to noise. 
 
Using our normal signaling strategy (0V for “0”, 1V for “1”), on 
a noise-free channel with no ISI, the samples at the receiver 
are either 0V or 1V.  Assuming that 0’s and 1’s are equally 
probable in the transmit stream, the number of 0V samples is 
approximately the same as the number of 1V samples.   So the 
mean and power of the noise-free received signal are 
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p(bit error) 
Now assume the channel has Gaussian noise with μ=0 and 
variance σ2.  And we’ll assume a digitization threshold of 0.5V.  
We can calculate the probability that noise[k] is large enough 
that y[k] = ynf[k] + noise[k] is received incorrectly: 

p(error | transmitted “0”): 

0 

σ 

0.5 

1-Φμ,σ(0.5) = Φμ,σ(-0.5)
= Φ((-0.5-0)/σ) 
= Φ(-0.5/σ)

p(error | transmitted “1”): 

0.5 1 

σ 

Φμ,σ(0.5)
= Φ((0.5-1)/σ) 
= Φ(-0.5/σ)

p(bit error) = p(transmit “0”)*p(error | transmitted “0”) + 
p(transmit “1”)*p(error | transmitted “1”) 

                 = 0.5*Φ(-0.5/σ) + 0.5*Φ(-0.5/σ)
                 = Φ(-0.5/σ) 

Plots of noise-free voltage 
+ Gaussian noise 
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BER (no ISI) vs. SNR 

SNR (db) =10 log
!Psignal
!Pnoise
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We calculated the power of the 
noise-free signal to be 0.25 and 
the power of the Gaussian noise 
is its variance, so 

Given an SNR, we can use the 
formula above to compute σ2 
and then plug that into the 
formula on the previous slide 
to compute p(bit error) = BER. 
 
The BER result is plotted to the 
right for various SNR values. 


