
6.02 Spring 2011 Lecture 8, Slide #1

6.02 Spring 2011
Lecture #8

•  Coping with errors using packets
•  Detecting errors: checksums, CRC
•  Hamming distance & single error correction
•  (n,k) block codes

6.02 Spring 2011 Lecture 8, Slide #2

There’s good news and bad news…

The good news: Our digital
signaling scheme usually allows
us to recover the original signal
despite small amplitude errors
introduced by inter-symbol
interference and noise. An
example of the digital abstraction
doing its job!

The bad news: larger amplitude errors (hopefully infrequent)
that change the signal irretrievably. These show up as bit
errors in our digital data stream.

V/2

tSAMPLE

0

V

6.02 Spring 2011 Lecture 8, Slide #3

Bit Errors

0 V V/2

p(0) = 0.5
µ = 0
! = !NOISE

p(1) = 0.5
µ = V
! = !NOISE

Assuming a Gaussian PDF for noise and only 1-bit of inter-
symbol interference, samples at tSAMPLE have the following PDF:

!

BER = (0.5)" V /2 #V
$NOISE

%

&
'

(

)
* + (0.5) 1#"

V /2 # 0
$NOISE

%

&
'

(

)
*

%

&
'

(

)
* ="

#V /2
$NOISE

%

&
'

(

)
*

We can estimate the bit-error rate (BER) using !, the unit
normal cumulative distribution function:

For a smaller BER, you need a smaller σNOISE or a larger V!

p(0)*p(rcv 1 | xmit 0) p(1)*p(rcv 0 | xmit 1)

tsample

6.02 Spring 2011 Lecture 8, Slide #4

Dealing With Errors: Packets

message

message1 message2 message3 1 chk1 2 chk2 3 chk3

Packet = {#, message, chk}

Sequence number provides
unique identifier for each
packet.

Check bits are redundant
information that lets receiver
verify # and message. Failure?
Ask for packet to be resent.

To deal with errors, divide message into fixed-sized packets,
which are transmitted one after another.

Packet size:
Too big → p(error) is larger, more to resend
Too small → #/chk overhead is large

6.02 Spring 2011 Lecture 8, Slide #5

Check bits

message seq chk

f

message seq chk

f

=

True: no errors
False: errors

Transmitter Receiver

Check bits computed from #
and message. Goal: change a
bit in message → many bits
change in check bits.

“many bits
to fewer
bits”

6.02 Spring 2011 Lecture 8, Slide #6

Detecting Errors

message seq chk

f

=

True

message seq chk

f

=

False

Likely errors…

Likely errors:
• Random bits (BER)
• Error bursts

6.02 Spring 2011 Lecture 8, Slide #7

Checksums

•  Simple checksum
–  Add up all the message units, send along sum

–  Easy for two errors to mask one another
•  Some 0 bit changed to a 1; 1 bit in same position in another

message unit changed to a 0… sum is unchanged

•  Weighted checksum
–  Add up all the message units, each weighted by its index

in the message, send along sum

–  Still too easy for two errors to offset one another

•  Both! Adler-32
–  A = (1 + sum of message units) mod 65521

–  B = (sum of Ai after each message unit) mod 65521

–  Send 32-bit quantity (B<<16) + A

–  Good in software, not good for short messages

6.02 Spring 2011 Lecture 8, Slide #8

Cyclical Redundancy Check

Sending: Initialize all D elements to 0. Set switch to position A, send
message bit-by-bit. When complete, set switch to position B and send
16 more bits.

Receiving: Initialize all D elements to 0. Set switch to position A,
receive message and CRC bit-by-bit. If correct, all D elements should
be 0 after last bit has been processed.

CRC-16 detects all single- and double-bit errors, all odd numbers of
errors, all errors with burst lengths < 16, and a large fraction (1-2-16) of
all other bursts.

http://www.erg.abdn.ac.uk/users/gorry/course/dl-pages/crc.html

Example: CRC-16

6.02 Spring 2011 Lecture 8, Slide #9

Approximate BER for common channels

Channel type Bandwidth BER

Telephone Landline 2 Mbits/sec 10-4 to 10-6

Twisted pair (differential) 1 Gbits/sec !10-7

Coaxial cable 100 Mbits/sec !10-6

Fiber Optics 10 Tbits/sec !10-9

Infrared 2 Mbits/sec 10-4 to 10-6

3G cellular 1 Mbits/sec 10-4

Source: Rahmani, et al, Error Detection Capabilities of
Automotive Technologies and Ethernet – A Comparative Study,
2007 IEEE Intelligent Vehicles Symposium, p 674-679

6.02 Spring 2011 Lecture 8, Slide #10

How Frequent is Packet Retransmission?
p(1 or more errors) = 1 – p(no errors) = 1 – (1 – BER)k

With 1kbyte packets and BER=1e-6, retransmit 1 every 100.

6.02 Spring 2011 Lecture 8, Slide #11

Implement Single Error Correction?

To reduce retransmission rate, suppose we invent a scheme that
can correct single-bit errors and apply it to sub-blocks of the
data packet (effectively reducing k). Does that help?

p(2 or more errors) = 1 – p(no errors) – p(exactly one error)
 = 1 – (1 – BER)k – k*BER*(1-BER)k-1

6.02 Spring 2011 Lecture 8, Slide #12

Digital Transmission using SECC

•  Start with original message

•  Add checksum to enable verification
of error-free transmission

•  Apply SECC, adding parity bits to
each k-bit block of the message.
Number of parity bits (p) depends
on code:
–  Replication: p grows as O(k)

–  Rectangular: p grows as O("k)

–  Hamming: p grows as O(log k)

•  After xmit, correct errors

•  Verify checksum, fails if
undetected/uncorrectable error

•  Deliver or discard message

message

message chk #

Compute Checksum

k k k k

Partition

k+p k+p k+p k+p

Apply SECC

k k k k

Correct errors

message chk

Check Checksum

k+p k+p k+p k+p

Transmit errors

6.02 Spring 2011 Lecture 8, Slide #13

Channel coding
Our plan to deal with bit errors:

We’ll add redundant information to the transmitted bit stream (a
process called channel coding) so that we can detect errors at the
receiver. Ideally we’d like to correct commonly occurring errors,
e.g., error bursts of bounded length. Otherwise, we should
detect uncorrectable errors and use, say, retransmission to deal
with the problem.

Digital
Transmitter

Digital
Receiver

Channel
Coding

Error
Correction

Message bit stream

Bit stream with redundant
information used for dealing
with errors

redundant bit
stream possibly
with errors

Recovered message bit stream +
uncorrectable error indicator

C
h

a
n

n
el

6.02 Spring 2011 Lecture 8, Slide #14

Error detection and correction
Suppose we wanted to reliably transmit the result of a single coin
flip:

Further suppose that during transmission a single-bit error
occurs, i.e., a single “0” is turned into a “1” or a “1” is turned
into a “0”.

0

1

“heads” “tails”

Heads: “0” Tails: “1”

This is a prototype of the “bit”
coin for the new information
economy. Value = 12.5¢

6.02 Spring 2011 Lecture 8, Slide #15

Hamming Distance
(Richard Hamming, 1950)

HAMMING DISTANCE: The
number of digit positions in
which the corresponding digits
of two encodings of the same
length are different

The Hamming distance between a valid binary code word and the
same code word with single-bit error is 1.

The problem with our simple encoding is that the two valid code
words (“0” and “1”) also have a Hamming distance of 1. So a
single error changes a valid code word into another valid code
word…

1 0 “heads” “tails”

single-bit error

I wish he’d
increase his
hamming distance

6.02 Spring 2011 Lecture 8, Slide #16

Error Detection

What we need is an encoding where a single-bit
error doesn’t produce another valid code word.

11 00 “heads” “tails”

01

10

single-bit error

We can add single error detection to any length code word by
adding a parity bit chosen to guarantee the Hamming
distance between any two valid code words is at least 2. In
the diagram above, we’re using “even parity” where the
added bit is chosen to make the total number of 1’s in the
code word even.

If D is the minimum
Hamming distance
between code words,
we can detect up to
(D-1)-bit errors

6.02 Spring 2011 Lecture 8, Slide #17

Parity check

•  A parity bit can be added to any length message and is
chosen to make the total number of “1” bits even (aka “even
parity”).

•  To check for a single-bit error (actually any odd number of
errors), count the number of “1”s in the received message
and if it’s odd, there’s been an error.

0 1 1 0 0 1 0 1 0 0 1 1 ! original word with parity
0 1 1 0 0 0 0 1 0 0 1 1 ! single-bit error (detected)
0 1 1 0 0 0 1 1 0 0 1 1 ! 2-bit error (not detected)

•  One can “count” by summing the bits in the word modulo 2
(which is equivalent to XOR’ing the bits together).

6.02 Spring 2011 Lecture 8, Slide #18

Error Correction

110

000 “heads”

“tails”

100

010

single-bit error

111

001

101

011

By increasing the Hamming distance between valid code
words to 3, we guarantee that the sets of words produced by
single-bit errors don’t overlap. So if we detect an error, we
can perform error correction since we can tell what the valid
code was before the error happened.

• Can we safely detect double-bit errors while correcting
 1-bit errors?
• Do we always need to triple the number of bits?

If D is the minimum
Hamming distance
between code words,
we can correct up to

 - bit errors !"

!
#$

%

2
1D

6.02 Spring 2011 Lecture 8, Slide #19

Single Error Correcting Codes (SECC)

Basic idea:
–  Use multiple parity bits, each covering a subset of the

data bits.

–  No two message bits belong to exactly the same subsets,
so a single error will generate a unique set of parity check
errors.

B1

B0

B3
B2

P0 P1

P2

Suppose we check the
parity and discover that P1
and P2 indicate an error?
 bit B2 must have flipped

What if only P2 indicates
an error?
 P2 itself had the error! P0 = B0"B1"B3

P1 = B0"B2"B3
P2 = B1"B2"B3

Modulo-2
addition,
aka XOR

6.02 Spring 2011 Lecture 8, Slide #20

Checking the parity
•  Transmit: Compute the parity bits and send them along with

the message bits

•  Receive: After receiving the (possibly corrupted) message,
compute a syndrome bit (Ei) for each parity bit. For the code
on previous slide:

•  If all the Ei are zero: no errors!

•  Otherwise the particular combination of the Ei can be used to
figure out which bit to correct.

E0 = B0 " B1 " B3 " P0
E1 = B0 " B2 " B3 " P1

E2 = B1 " B2 " B3 " P2

6.02 Spring 2011 Lecture 8, Slide #21

Using the Syndrome to Correct Errors

Continuing example from previous slides: there are
three syndrome bits, giving us a total of 8 encodings.

E2E1E0 Single Error Correction

0 0 0 No errors

0 0 1 P0 has an error, flip to correct

0 1 0 P1 has an error, flip to correct

0 1 1 B0 has an error, flip to correct

1 0 0 P2 has an error, flip to correct

1 0 1 B1 has an error, flip to correct

1 1 0 B2 has an error, flip to correct

1 1 1 B3 has an error, flip to correct

The 8 encodings indicate the 8 possible correction actions: no
errors, error in one of 4 data bits, error in one of 3 parity bits

What happens if
there is more than
one error?

6.02 Spring 2011 Lecture 8, Slide #22

(n,k,d) Systematic Block Codes

•  Split message into k-bit blocks

•  Add (n-k) parity bits to each block, making each block n bits
long.

•  Often we’ll use the notation (n,k,d) where d is the minimum
Hamming distance between code words.

•  The ratio k/n is called the code rate and is a measure of the
code’s overhead (always ! 1, larger is better).

Message bits Parity bits

k

n

The entire block is called
a “code word” and this
is an (n,k) code.

n-k

6.02 Spring 2011 Lecture 8, Slide #23

A simple (8,4,3) code

B0 B1

B2 B3

P2 P3

P0

P1

P0 is parity bit
for row #1

P3 is parity bit
for column #2

Idea: start with rectangular
array of data bits, add parity
checks for each row and
column. Single-bit error in
data will show up as parity
errors in a particular row
and column, pinpointing the
bit that has the error.

0 1 1
1 1 0
1 0

0 1 1
1 0 0
1 0

Parity for each row
and column is
correct # no errors

Parity check fails for
row #2 and column #2
bit B3 is incorrect

0 1 1
1 1 1
1 0

Parity check only fails
for row #2
bit P1 is incorrect

Can you verify this code has a Hamming distance of 3?

6.02 Spring 2011 Lecture 8, Slide #24

How many parity bits are needed?

•  Suppose we want to do single-bit error correction
–  Need unique combination of syndrome bits for each possible

single bit error + no errors

–  n-bit blocks → n possible single bit errors

–  Syndrome bits all zero → no errors

•  Assume n-k parity bits (out of n total bits)
–  Hence there are n-k syndrome bits

–  2n-k – 1 non-zero combinations of n-k syndrome bits

•  So, at a minimum, we need n ! 2n-k – 1
–  Given k, use constraint to determine minimum n needed to

ensure single error correction is possible

–  (n,k) Hamming SECC codes: (7,4) (15,11) (31,26)

The (7,4) Hamming SECC code is shown on slide 19, see the
Notes for details on constructing the Hamming codes. The
clever construction makes the syndrome bits into the index
needing correction.

