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6.02 Spring 2011 
Lecture #8 

•  Coping with errors using packets 
•  Detecting errors: checksums, CRC 
•  Hamming distance & single error correction  
•  (n,k) block codes 
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There’s good news and bad news… 

The good news: Our digital 
signaling scheme usually allows 
us to recover the original signal 
despite small amplitude errors 
introduced by inter-symbol 
interference and noise.  An 
example of the digital abstraction 
doing its job! 

The bad news: larger amplitude errors (hopefully infrequent) 
that change the signal irretrievably.  These show up as bit 
errors in our digital data stream. 
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Bit Errors 

0 V V/2 

p(0) = 0.5 
µ = 0 
! = !NOISE 
 

p(1) = 0.5 
µ = V 
! = !NOISE 
 

Assuming a Gaussian PDF for noise and only 1-bit of inter-
symbol interference, samples at tSAMPLE have the following PDF: 
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We can estimate the bit-error rate (BER) using !, the unit 
normal cumulative distribution function: 

For a smaller BER, you need a smaller σNOISE or a larger V! 

p(0)*p(rcv 1 | xmit 0) p(1)*p(rcv 0 | xmit 1) 

tsample 
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Dealing With Errors: Packets 

message 

message1 message2 message3 1 chk1 2 chk2 3 chk3 

Packet = {#, message, chk} 

Sequence number provides 
unique identifier for each 
packet.  

Check bits are redundant 
information that lets receiver 
verify # and message.  Failure? 
Ask for packet to be resent. 

To deal with errors, divide message into fixed-sized packets, 
which are transmitted one after another. 

Packet size: 
Too big → p(error) is larger, more to resend 
Too small → #/chk overhead is large 
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Check bits 

message seq chk 

f 

message seq chk 

f 

= 

True: no errors 
False: errors 

Transmitter Receiver 

Check bits computed from # 
and message.  Goal: change a 
bit in message → many bits 
change in check bits. 

“many bits 
to fewer 
bits” 
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Detecting Errors 

message seq chk 

f 

= 

True 

message seq chk 

f 

= 

False 

Likely errors… 

Likely errors: 
• Random bits (BER) 
• Error bursts 
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Checksums 

•  Simple checksum 
–  Add up all the message units, send along sum 

–  Easy for two errors to mask one another 
•  Some 0 bit changed to a 1; 1 bit in same position in another 

message unit changed to a 0…  sum is unchanged 

•  Weighted checksum 
–  Add up all the message units, each weighted by its index 

in the message, send along sum 

–  Still too easy for two errors to offset one another 

•  Both!  Adler-32 
–  A = (1 + sum of message units) mod 65521 

–  B = (sum of Ai after each message unit) mod 65521 

–  Send 32-bit quantity (B<<16) + A 

–  Good in software, not good for short messages 
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Cyclical Redundancy Check 

Sending: Initialize all D elements to 0.  Set switch to position A, send 
message bit-by-bit.  When complete, set switch to position B and send 
16 more bits. 
 
Receiving: Initialize all D elements to 0.  Set switch to position A, 
receive message and CRC bit-by-bit.  If correct, all D elements should 
be 0 after last bit has been processed. 
 
CRC-16 detects all single- and double-bit errors, all odd numbers of 
errors, all errors with burst lengths < 16, and a large fraction (1-2-16) of 
all other bursts. 

http://www.erg.abdn.ac.uk/users/gorry/course/dl-pages/crc.html 

Example: CRC-16 
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Approximate BER for common channels 

Channel type Bandwidth BER 

Telephone Landline 2 Mbits/sec 10-4 to 10-6 

Twisted pair (differential) 1 Gbits/sec !10-7 

Coaxial cable 100 Mbits/sec !10-6 

Fiber Optics 10 Tbits/sec !10-9 

Infrared 2 Mbits/sec 10-4 to 10-6 

3G cellular 1 Mbits/sec 10-4 

Source: Rahmani, et al, Error Detection Capabilities of 
Automotive Technologies and Ethernet – A Comparative Study, 
2007 IEEE Intelligent Vehicles Symposium, p 674-679 
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How Frequent is Packet Retransmission? 
p(1 or more errors) = 1 – p(no errors) = 1 – (1 – BER)k 

With 1kbyte packets and BER=1e-6, retransmit 1 every 100. 
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Implement Single Error Correction? 

To reduce retransmission rate, suppose we invent a scheme that 
can correct single-bit errors and apply it to sub-blocks of the 
data packet (effectively reducing k).  Does that help? 

p(2 or more errors) = 1 – p(no errors) – p(exactly one error) 
                              = 1 – (1 – BER)k – k*BER*(1-BER)k-1 
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Digital Transmission using SECC 

•  Start with original message 

•  Add checksum to enable verification 
of error-free transmission 

•  Apply SECC, adding parity bits to 
each k-bit block of the message. 
Number of parity bits (p) depends 
on code: 
–  Replication: p grows as O(k) 

–  Rectangular: p grows as O("k) 

–  Hamming: p grows as O(log k) 

•  After xmit, correct errors 

•  Verify checksum, fails if 
undetected/uncorrectable error 

•  Deliver or discard message 

message 

message chk # 

Compute Checksum 

k k k k 

Partition 

k+p k+p k+p k+p 

Apply SECC 

k k k k 

Correct errors 

message chk 

Check Checksum 

# 

k+p k+p k+p k+p 

Transmit errors 
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Channel coding 
Our plan to deal with bit errors: 

We’ll add redundant information to the transmitted bit stream (a 
process called channel coding) so that we can detect errors at the 
receiver.  Ideally we’d like to correct commonly occurring errors, 
e.g., error bursts of bounded length.   Otherwise, we should 
detect uncorrectable errors and use, say, retransmission to deal 
with the problem.   

Digital 
Transmitter 

Digital 
Receiver 

Channel 
Coding 

Error 
Correction 

Message bit stream 

Bit stream with redundant 
information used for dealing 
with errors 

redundant bit 
stream possibly 
with errors 

Recovered message bit stream + 
uncorrectable error indicator 
 

C
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a
n
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el 
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Error detection and correction 
Suppose we wanted to reliably transmit the result of a single coin 
flip: 

Further suppose that during transmission a single-bit error 
occurs, i.e., a single “0” is turned into a “1” or a “1” is turned 
into a “0”. 

0 

1 

“heads” “tails” 

Heads: “0” Tails: “1” 

This is a prototype of the “bit” 
coin for the new information 
economy.  Value = 12.5¢ 
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Hamming Distance 
(Richard Hamming, 1950) 

HAMMING DISTANCE:  The 
number of digit positions in 
which the corresponding digits 
of two encodings of the same 
length are different 

The Hamming distance between a valid binary code word and the 
same code word with single-bit error is 1. 
 
The problem with our simple encoding is that the two valid code 
words (“0” and “1”) also have a Hamming distance of 1.  So a 
single error changes a valid code word into another valid code 
word… 

1 0 “heads” “tails” 

single-bit error 

I wish he’d 
increase his 
hamming distance 
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Error Detection 

What we need is an encoding where a single-bit 
error doesn’t produce another valid code word. 

11 00 “heads” “tails” 

01 

10 

single-bit error 

We can add single error detection to any length code word by 
adding a parity bit chosen to guarantee the Hamming 
distance between any two valid code words is at least 2.  In 
the diagram above, we’re using “even parity” where the 
added bit is chosen to make the total number of 1’s in the 
code word even. 

If D is the minimum 
Hamming distance 
between code words, 
we can detect up to 
(D-1)-bit errors  
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Parity check 

•  A parity bit can be added to any length message and is 
chosen to make the total number of “1” bits even (aka “even 
parity”). 
 

•  To check for a single-bit error (actually any odd number of 
errors), count the number of “1”s in the received message 
and if it’s odd, there’s been an error. 
 
0 1 1 0 0 1 0 1 0 0 1 1 ! original word with parity 
0 1 1 0 0 0 0 1 0 0 1 1 ! single-bit error (detected) 
0 1 1 0 0 0 1 1 0 0 1 1 ! 2-bit error (not detected) 
 

•  One can “count” by summing the bits in the word modulo 2 
(which is equivalent to XOR’ing the bits together). 
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Error Correction 

110 

000 “heads” 

“tails” 

100 

010 

single-bit error 

111 

001 

101 

011 

By increasing the Hamming distance between valid code 
words to 3, we guarantee that the sets of words produced by 
single-bit errors don’t overlap.  So if we detect an error, we 
can perform error correction since we can tell what the valid 
code was before the error happened. 

• Can we safely detect double-bit errors while correcting 
   1-bit errors? 
• Do we always need to triple the number of bits? 

If D is the minimum 
Hamming distance 
between code words, 
we can correct up to 
 
        - bit errors  !"

!
#$

# %

2
1D

6.02 Spring 2011 Lecture 8, Slide #19 

Single Error Correcting Codes (SECC) 

Basic idea: 
–  Use multiple parity bits, each covering a subset of the 

data bits. 

–  No two message bits belong to exactly the same subsets, 
so a single error will generate a unique set of parity check 
errors. 

B1 

B0 

B3 
B2 

P0 P1 

P2 

Suppose we check the 
parity and discover that P1 
and P2 indicate an error? 
    bit B2 must have flipped 
 
What if only P2 indicates 
an error? 
    P2 itself had the error! P0 = B0"B1"B3 

P1 = B0"B2"B3 
P2 = B1"B2"B3 

Modulo-2 
addition, 
aka XOR 
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Checking the parity 
•  Transmit: Compute the parity bits and send them along with 

the message bits 
 

•  Receive: After receiving the (possibly corrupted) message, 
compute a syndrome bit (Ei) for each parity bit.  For the code 
on previous slide: 
 
 
 
 
 

•  If all the Ei are zero: no errors! 
 

•  Otherwise the particular combination of the Ei can be used to 
figure out which bit to correct. 
 
 

E0 = B0 " B1 " B3 " P0 
E1 = B0 " B2 " B3 " P1 

E2 = B1 " B2 " B3 " P2 
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Using the Syndrome to Correct Errors 

Continuing example from previous slides:  there are 
three syndrome bits, giving us a total of 8 encodings. 

E2E1E0 Single Error Correction 

0 0 0 No errors 

0 0 1 P0 has an error, flip to correct 

0 1 0 P1 has an error, flip to correct 

0 1 1 B0 has an error, flip to correct 

1 0 0 P2 has an error, flip to correct 

1 0 1 B1 has an error, flip to correct 

1 1 0 B2 has an error, flip to correct 

1 1 1 B3 has an error, flip to correct 

The 8 encodings indicate the 8 possible correction actions: no 
errors, error in one of 4 data bits, error in one of 3 parity bits 

What happens if 
there is more than 
one error? 
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(n,k,d) Systematic Block Codes 

•  Split message into k-bit blocks 

•  Add (n-k) parity bits to each block, making each block n bits 
long. 
 
 
 
 
 
 
 
 

•  Often we’ll use the notation (n,k,d) where d is the minimum 
Hamming distance between code words. 

•  The ratio k/n is called the code rate and is a measure of the 
code’s overhead (always ! 1, larger is better). 

Message bits Parity bits 

k 

n 

The entire block is called 
a “code word” and this 
is an (n,k) code. 

n-k 
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A simple (8,4,3) code 

B0 B1 

B2 B3 

P2 P3 

P0 

P1 

P0 is parity bit 
for row #1 

P3 is parity bit 
for column #2 

Idea: start with rectangular 
array of data bits, add parity 
checks for each row and 
column.  Single-bit error in 
data will show up as parity 
errors in a particular row 
and column, pinpointing the 
bit that has the error. 

0 1 1 
1 1 0 
1 0 

0 1 1 
1 0 0 
1 0 

Parity for each row 
and column is 
correct # no errors 

Parity check fails for 
row #2 and column #2 
# bit B3 is incorrect 

0 1 1 
1 1 1 
1 0 

Parity check only fails 
for row #2  
# bit P1 is incorrect 

Can you verify this code has a Hamming distance of 3? 

6.02 Spring 2011 Lecture 8, Slide #24 

How many parity bits are needed? 

•  Suppose we want to do single-bit error correction 
–  Need unique combination of syndrome bits for each possible 

single bit error + no errors 

–  n-bit blocks → n possible single bit errors 

–  Syndrome bits all zero → no errors 

•  Assume n-k parity bits (out of n total bits) 
–  Hence there are n-k syndrome bits 

–  2n-k – 1 non-zero combinations of n-k syndrome bits 

•  So, at a minimum, we need n ! 2n-k – 1 
–  Given k, use constraint to determine minimum n needed to 

ensure single error correction is possible 

–  (n,k) Hamming SECC codes: (7,4)  (15,11)  (31,26) 

The (7,4) Hamming SECC code is shown on slide 19, see the 
Notes for details on constructing the Hamming codes.   The 
clever construction makes the syndrome bits into the index 
needing correction. 


