
6.02 Spring 2011 Lecture 9, Slide #1

6.02 Spring 2011
Lecture #9

•  How many parity bits?
•  Dealing with burst errors
•  Reed-Solomon codes

6.02 Spring 2011 Lecture 9, Slide #2

Single Error Correcting Codes (SECC)
Basic idea:

–  Use multiple parity bits, each covering a subset of the
data bits.

–  No two message bits belong to exactly the same subsets,
so a single error will generate a unique set of parity check
errors.

B1

B0

B3
B2

P0 P1

P2

Suppose we check the
parity and discover that P1
and P2 indicate an error?
 bit B2 must have flipped

What if only P2 indicates
an error?
 P2 itself had the error! P0 = B0!B1!B3

P1 = B0!B2!B3
P2 = B1!B2!B3

Modulo-2
addition,
aka XOR

6.02 Spring 2011 Lecture 9, Slide #3

Checking the parity
•  Transmit: Compute the parity bits and send them along with

the message bits

•  Receive: After receiving the (possibly corrupted) message,
compute a syndrome bit (Ei) for each parity bit. For the code
on previous slide:

•  If all the Ei are zero: no errors!

•  Otherwise the particular combination of the Ei can be used to
figure out which bit to correct.

E0 = B0 ! B1 ! B3 ! P0
E1 = B0 ! B2 ! B3 ! P1

E2 = B1 ! B2 ! B3 ! P2

6.02 Spring 2011 Lecture 9, Slide #4

Using the Syndrome to Correct Errors

Continuing example from previous slides: there are
three syndrome bits, giving us a total of 8 encodings.

E2E1E0 Single Error Correction

0 0 0 No errors

0 0 1 P0 has an error, flip to correct

0 1 0 P1 has an error, flip to correct

0 1 1 B0 has an error, flip to correct

1 0 0 P2 has an error, flip to correct

1 0 1 B1 has an error, flip to correct

1 1 0 B2 has an error, flip to correct

1 1 1 B3 has an error, flip to correct

The 8 encodings indicate the 8 possible correction actions: no
errors, error in one of 4 data bits, error in one of 3 parity bits

What happens if
there is more than
one error?

6.02 Spring 2011 Lecture 9, Slide #5

(n,k,d) Systematic Block Codes

•  Split message into k-bit blocks

•  Add (n-k) parity bits to each block, making each block n bits
long.

•  Often we’ll use the notation (n,k,d) where d is the minimum
Hamming distance between code words.

•  The ratio k/n is called the code rate and is a measure of the
code’s overhead (always ! 1, larger is better).

Message bits Parity bits

k

n

The entire block is called
a “code word” and this
is an (n,k) code.

n-k

6.02 Spring 2011 Lecture 9, Slide #6

A simple (8,4,3) code

B0 B1

B2 B3

P2 P3

P0

P1

P0 is parity bit
for row #1

P3 is parity bit
for column #2

Idea: start with rectangular
array of data bits, add parity
checks for each row and
column. Single-bit error in
data will show up as parity
errors in a particular row
and column, pinpointing the
bit that has the error.

0 1 1
1 1 0
1 0

0 1 1
1 0 0
1 0

Parity for each row
and column is
correct " no errors

Parity check fails for
row #2 and column #2
" bit B3 is incorrect

0 1 1
1 1 1
1 0

Parity check only fails
for row #2
" bit P1 is incorrect

Can you verify this code has a Hamming distance of 3?

6.02 Spring 2011 Lecture 9, Slide #7

How many parity bits are needed?
•  Suppose we want to do single-bit error correction

–  Need unique combination of syndrome bits for each possible
single bit error + no errors

–  n-bit blocks → n possible single bit errors

–  Syndrome bits all zero → no errors

•  Assume n-k parity bits (out of n total bits)
–  Hence there are n-k syndrome bits

–  2n-k – 1 non-zero combinations of n-k syndrome bits

•  So, at a minimum, we need n ! 2n-k – 1
–  Given k, use constraint to determine minimum n needed to

ensure single error correction is possible

–  (n,k) Hamming SECC codes: (7,4) (15,11) (31,26)

The (7,4) Hamming SECC code is shown on slide 19, see the
Notes for details on constructing the Hamming codes. The
clever construction makes the syndrome bits into the index
needing correction.

6.02 Spring 2011 Lecture 9, Slide #8

Error-Correcting Codes
•  Parity is a (n+1,n,2) code

–  Good code rate, but only 1-bit error detection

•  Replicating each bit r times is a (r,1,r) code
–  Simple way to get great error correction; poor code rate

–  Handy for solving quiz problems!

–  Number of parity bits grows linearly with size of message

•  “Rectangular” codes with row/column parity
–  Easy to visualize how multiple parity bits can be used to

triangulate location of 1-bit error
–  Number of parity bits grows as square root of message size

•  Hamming single error correcting codes (SECC) are (n,n-p,3)
where n = 2p-1 for p > 1
–  See Wikipedia article for details

–  Number of parity bits grows as log2 of message size

6.02 Spring 2011 Lecture 9, Slide #9

Noise models
•  Gaussian noise

–  Equal chance of noise at each sample
–  Gaussian PDF: low probability of large amplitude

–  Good for modeling total effect of many small, random noise
sources

•  Impulse noise
–  Infrequent bursts of high-amplitude noise, e.g., on a wireless

channel

–  Some number of consecutive bits lost, bounded by some burst
length B

–  Single-bit error correction seems like it’s useless for dealing with
impulse noise…
 or is it???

6.02 Spring 2011 Lecture 9, Slide #10

Dealing with
Burst Errors

Correcting single-bit errors is nice, but
in many situations errors come in
bursts many bits long (e.g., damage to
storage media, burst of interference on
wireless channel, …). How does
single-bit error correction help with
that?

Well, can we think of a way to turn a B-bit error burst into B single-bit
errors?

B

Problem: Bits from a particular
code word are transmitted
sequentially, so a B-bit burst
produces multi-bit errors.

Solution: interleave bits from B
different code words. Now a B-bit
burst produces 1-bit errors in B
different code words.

Row-by-row
transmission
order

(parity bits are
shown shaded)

B
Col-by-col
transmission
order

6.02 Spring 2011 Lecture 9, Slide #11

Interleaving

message

message crc

k k k k

k+p k+p k+p k+p

k+p k+p k+p k+p

Compute CRC

Partition

Apply ECC
Correct errors

 Check CRC
Interleave

B-way interleaved block

Transmit

Receive

B-way interleaved block

Deinterleave

k k k k

message crc

 Deliver or discard

errors

6.02 Spring 2011 Lecture 9, Slide #12

Framing
•  The receiver needs to know

–  the beginning of the B-way interleaved block in order to do
deinterleaving

–  the beginning of each ECC block in order to do error correction.

–  Since the interleaved block is made up of B ECC blocks, knowing
where the interleaved block begins automatically supplies the
necessary start info for the ECC blocks

•  8b10b encoding provides what we need! Here’s what gets
transmitted
–  Prefix to help train clock recovery (alternating 0s/1s, …)

–  8b10b sync symbol

–  Packet data: B ECC blocks recoded as 8b10b symbols
(after 8b10b decoding and error correction we get {#,data,chk})

–  Suffix to ensure transmitter doesn’t cutoff prematurely, receiver
has time to process last packet before starting search for
beginning of next packet

–  On some channels: idle time (no transmission)

6.02 Spring 2011 Lecture 9, Slide #13

Our Recipe (so far)

• Transmit
– Packetize: split message into

fixed-size blocks, add sequence
numbers, checksum

– SECC: split {#,data,chk} into k-
bit blocks, add parity bits to
create n-bit code words with
min Hamming distance of 3, B-
way interleaving

– 8b10b encoding: provide
synchronization info to locate
start of packet and sufficient
transitions for clock recovery

– Convert each bit into
samples_per_bit voltage
samples

• Receive
– Perform clock recovery using

transitions, derive bit stream
from voltage samples

– 8b10b decoding: locate sync,
decode

– SECC: deinterleave to spread
out burst errors, perform error
correction on n-bit blocks
producing k-bit blocks

– Packetize: verify checksum and
discard faulty packets. Keep
track of received sequence
numbers, ask for retransmit of
missing packets. Reassemble
packets into original message.

6.02 Spring 2011 Lecture 9, Slide #14

Remaining agenda items
•  With B ECC blocks per message, we can correct somewhere

between 1 and B errors depending on where in the message
they occur.
–  Can we make an ECC that corrects up to B errors without any

constraints where errors occur?

–  Yes! Reed-Solomon codes

•  Framing is necessary, but the sync itself can’t be protected by
an ECC scheme that requires framing.
–  This makes life hard for channels with higher BERs

–  Is there an error correction scheme that works on un-framed bit
streams?

–  Yes! Convolutional codes: encoding and the clever decoding
scheme will be discussed next week.

6.02 Spring 2011 Lecture 9, Slide #15

In search of a better code
•  Problem: information about a particular message unit (bit,

byte, ..) is captured in just a few locations, i.e., the message
unit and some number of parity units. So a small but
unfortunate set of errors might wipe out all the locations
where that info resides, causing us to lose the original
message unit.

•  Potential Solution: figure out a way to spread the info in each
message unit throughout all the code words in a block.
Require only some fraction good code words to recover the
original message.

6.02 Spring 2011 Lecture 9, Slide #16

Thought experiment…
•  Suppose you had two 8-bit values to communicate: A, B

•  We’d like an encoding scheme where each transmitted value
included information about both A and B
–  How about sending y = Ax + B for various values of x?

–  Standardize on a particular sequence for x, known to both the
transmitter and receiver. That way, we don’t have to actually
send the x’s – the receiver will know what they are. For
example, x = 1, 2, 3, 4, ...

–  How many values do you need to solve for A and B?

–  We’ll send extra to provide for recovery from errors…

6.02 Spring 2011 Lecture 9, Slide #17

Example
•  Suppose you received four values from the transmitter y = 73,

249, 321, 393, corresponding to x = 1, 2, 3 and 4
–  4 Eqns: A·1+B=73, A·2+B=249, A·3+B=321, A·4+B=393

•  We need two of these equations to solve for A and B; there are
six possible choices for which two to use

•  Take each pair and solve for A and B

•  Majority rules: A=72, B=105
–  The received value 73 had an error

–  If no errors: all six solutions for A and B would have matched

!

A "1+ B = 73
A " 2 + B = 249

!

A "1+ B = 73
A " 3+ B = 321

!

A "1+ B = 73
A " 4 + B = 393

!

A " 2 + B = 249
A " 3+ B = 321

!

A " 2 + B = 249
A " 4 + B = 393

!

A " 3+ B = 321
A " 4 + B = 393

A=175, B=-102 A=124, B=-51 A=106.6, B=-33.6

A=72, B=105 A=72, B=105 A=72, B=105

6.02 Spring 2011 Lecture 9, Slide #18

Spreading the wealth…
•  Generalize this idea: oversampled polynomials. Let

 P(x) = m0 + m1x + m2x2 + … + mk-1xk-1

where m0, m1, ..., mk-1 are the k message units to be encoded.
Transmit value of polynomial at n different predetermined
points v0, v1, ..., vn-1 :

 P(v0), P(v1), P(v2), ..., P(vn-1)

Use any k of the received values to construct a linear system
of k equations which can then be solved for k unknowns m0,
m1, ..., mk-1. Each transmitted value contains info about all
mi.

•  Note that using integer arithmetic, the P(v) values are
numerically greater than the mi and so require more bits to
represent than the mi. In general the encoded message
would require a lot more bits to send than the original
message!

6.02 Spring 2011 Lecture 9, Slide #19

Solving for the mi
•  Solving k linearly independent equations for the k unknowns

(i.e., the mi):

•  Solving a set of linear equations using Gaussian Elimination
(multiplying rows, switching rows, adding multiples of rows to
other rows) requires add, subtract, multiply and divide
operations.

•  These operations (in particular division) are only well defined
over fields, e.g., rational numbers, real numbers, complex
numbers -- not at all convenient to implement in hardware.

!

1 v0 v0
2 ! v0

k"1

1 v1 v1
2 ! v1

k"1

" " " # "
1 vk"1 vk"1

2 ! vk"1
k"1

$

%
%
%
%

&

'

(
(
(
(

m0

m1
"

mk"1

$

%
%
%
%

&

'

(
(
(
(

=

P(v0)
P(v1)
"

P(vk"1)

$

%
%
%
%

&

'

(
(
(
(

6.02 Spring 2011 Lecture 9, Slide #20

Finite Fields to the Rescue
•  Reed’s & Solomon’s idea: do all the arithmetic using a finite

field (also called a Galois field). If the mi have B bits, then
use a finite field with order 2B so that there will be a field
element corresponding to each possible value for mi.

•  For example with B = 2, here are the tables for the various
arithmetic operations for a finite field with 4 elements. Note
that every operation yields an element in the field, i.e., the
result is the same size as the operands.

+ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

* 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

A -A A-1

0 0 0

1 1 1

2 2 3

3 3 2

A + (-A) = 0 A * (A-1) = 1

6.02 Spring 2011 Lecture 9, Slide #21

How many values to send?

•  Note that in a Galois field of order 2B there are at most 2B

unique values v we can use to generate the P(v)
–  if we send more than 2B values, some of the equations we might

use when solving for the mi will not be linearly independent and
we won’t have enough information to find a unique solution for
the mi.

–  Sending P(0) isn’t very interesting (only involves m0)

•  Reed-Solomon codes use n = 2B-1 (n is the number of P(v)
values we generate and send).
–  For many applications B = 8, so n = 255
–  A popular R-S code is (255,223), i.e., a code block consisting of

223 8-bit data bytes + 32 check bytes

6.02 Spring 2011 Lecture 9, Slide #22

Use for error correction
•  If one of the P(vi) is received incorrectly, if it’s used to solve

for the mi, we’ll get the wrong result.

•  So try all possible (n choose k) subsets of values and use
each subset to solve for mi. Choose solution set that gets the
majority of votes.
–  No winner? Uncorrectable error… throw away block.

•  (n,k) code can correct up to (n-k)/2 errors since we need
enough good values to ensure that the correct solution set
gets a majority of the votes.
–  R-S (255,223) code can correct up to 16 symbol errors; good for

error bursts: 16 consecutive symbols = 128 bits!

6.02 Spring 2011 Lecture 9, Slide #23

Erasures are special
•  If a particular received value is known to be erroneous (an
“erasure”), don’t use it all!
–  How to tell when received value is erroneous? Sometimes there’s

channel information, e.g., carrier disappears.

–  See next slide for clever idea based on concatenated R-S codes

•  (n,k) R-S code can correct n-k erasures since we only need k
equations to solve for the k unknowns.

•  Any combination of E errors and S erasures can be corrected
so long as 2E + S ! n-k.

6.02 Spring 2011 Lecture 9, Slide #24

Example: CD error correction

•  On a CD: two concatenated R-S codes

28-byte block 28-byte block 28-byte block
De-interleave

Result: correct up to 3500-bit error bursts (2.4mm on CD surface)

32-byte block 32-byte block 32-byte block !

(28,24) code
Handles up to
4 byte erasures 24-byte block 24-byte block 24-byte block

De-interleave
24-byte block 24-byte block 24-byte block

32-byte block 32-byte block 32-byte block !
De-interleave

28-byte block 28 erasures 28-byte block

(32,28) code
Handles up to
2 byte errors

Uncorrectable error

errors

erasures

