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6.02 Spring 2011 
Lecture #9 

•  How many parity bits? 
•  Dealing with burst errors 
•  Reed-Solomon codes 
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Single Error Correcting Codes (SECC) 
Basic idea: 

–  Use multiple parity bits, each covering a subset of the 
data bits. 

–  No two message bits belong to exactly the same subsets, 
so a single error will generate a unique set of parity check 
errors. 

B1 

B0 

B3 
B2 

P0 P1 

P2 

Suppose we check the 
parity and discover that P1 
and P2 indicate an error? 
    bit B2 must have flipped 
 
What if only P2 indicates 
an error? 
    P2 itself had the error! P0 = B0!B1!B3 

P1 = B0!B2!B3 
P2 = B1!B2!B3 

Modulo-2 
addition, 
aka XOR 
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Checking the parity 
•  Transmit: Compute the parity bits and send them along with 

the message bits 
 

•  Receive: After receiving the (possibly corrupted) message, 
compute a syndrome bit (Ei) for each parity bit.  For the code 
on previous slide: 
 
 
 
 
 

•  If all the Ei are zero: no errors! 
 

•  Otherwise the particular combination of the Ei can be used to 
figure out which bit to correct. 
 
 

E0 = B0 ! B1 ! B3 ! P0 
E1 = B0 ! B2 ! B3 ! P1 

E2 = B1 ! B2 ! B3 ! P2 
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Using the Syndrome to Correct Errors 

Continuing example from previous slides:  there are 
three syndrome bits, giving us a total of 8 encodings. 

E2E1E0 Single Error Correction 

0 0 0 No errors 

0 0 1 P0 has an error, flip to correct 

0 1 0 P1 has an error, flip to correct 

0 1 1 B0 has an error, flip to correct 

1 0 0 P2 has an error, flip to correct 

1 0 1 B1 has an error, flip to correct 

1 1 0 B2 has an error, flip to correct 

1 1 1 B3 has an error, flip to correct 

The 8 encodings indicate the 8 possible correction actions: no 
errors, error in one of 4 data bits, error in one of 3 parity bits 

What happens if 
there is more than 
one error? 
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(n,k,d) Systematic Block Codes 

•  Split message into k-bit blocks 

•  Add (n-k) parity bits to each block, making each block n bits 
long. 
 
 
 
 
 
 
 
 

•  Often we’ll use the notation (n,k,d) where d is the minimum 
Hamming distance between code words. 

•  The ratio k/n is called the code rate and is a measure of the 
code’s overhead (always ! 1, larger is better). 

Message bits Parity bits 

k 

n 

The entire block is called 
a “code word” and this 
is an (n,k) code. 

n-k 
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A simple (8,4,3) code 

B0 B1 

B2 B3 

P2 P3 

P0 

P1 

P0 is parity bit 
for row #1 

P3 is parity bit 
for column #2 

Idea: start with rectangular 
array of data bits, add parity 
checks for each row and 
column.  Single-bit error in 
data will show up as parity 
errors in a particular row 
and column, pinpointing the 
bit that has the error. 

0 1 1 
1 1 0 
1 0 

0 1 1 
1 0 0 
1 0 

Parity for each row 
and column is 
correct " no errors 

Parity check fails for 
row #2 and column #2 
" bit B3 is incorrect 

0 1 1 
1 1 1 
1 0 

Parity check only fails 
for row #2  
" bit P1 is incorrect 

Can you verify this code has a Hamming distance of 3? 

6.02 Spring 2011 Lecture 9, Slide #7 

How many parity bits are needed? 
•  Suppose we want to do single-bit error correction 

–  Need unique combination of syndrome bits for each possible 
single bit error + no errors 

–  n-bit blocks → n possible single bit errors 

–  Syndrome bits all zero → no errors 

•  Assume n-k parity bits (out of n total bits) 
–  Hence there are n-k syndrome bits 

–  2n-k – 1 non-zero combinations of n-k syndrome bits 

•  So, at a minimum, we need n ! 2n-k – 1 
–  Given k, use constraint to determine minimum n needed to 

ensure single error correction is possible 

–  (n,k) Hamming SECC codes: (7,4)  (15,11)  (31,26) 

The (7,4) Hamming SECC code is shown on slide 19, see the 
Notes for details on constructing the Hamming codes.   The 
clever construction makes the syndrome bits into the index 
needing correction. 
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Error-Correcting Codes 
•  Parity is a (n+1,n,2) code 

–  Good code rate, but only 1-bit error detection 

•  Replicating each bit r times is a (r,1,r) code 
–  Simple way to get great error correction; poor code rate 

–  Handy for solving quiz problems! 

–  Number of parity bits grows linearly with size of message 

•  “Rectangular” codes with row/column parity 
–  Easy to visualize how multiple parity bits can be used to 

triangulate location of 1-bit error 
–  Number of parity bits grows as square root of message size 

•  Hamming single error correcting codes (SECC) are (n,n-p,3) 
where n = 2p-1 for p > 1 
–  See Wikipedia article for details 

–  Number of parity bits grows as log2 of message size 
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Noise models 
•  Gaussian noise 

–  Equal chance of noise at each sample 
–  Gaussian PDF: low probability of large amplitude 

–  Good for modeling total effect of many small, random noise 
sources 
 

•  Impulse noise 
–  Infrequent bursts of high-amplitude noise, e.g., on a wireless 

channel 

–  Some number of consecutive bits lost, bounded by some burst 
length B 

–  Single-bit error correction seems like it’s useless for dealing with 
impulse noise… 
   or is it??? 
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Dealing with 
Burst Errors 

Correcting single-bit errors is nice, but 
in many situations errors come in 
bursts many bits long (e.g., damage to 
storage media, burst of interference on 
wireless channel, …).  How does 
single-bit error correction help with 
that? 

Well, can we think of a way to turn a B-bit error burst into B single-bit 
errors? 

B 

Problem: Bits from a particular 
code word are transmitted 
sequentially, so a B-bit burst 
produces multi-bit errors. 

Solution: interleave bits from B 
different code words.  Now a B-bit 
burst produces 1-bit errors in B 
different code words. 

Row-by-row 
transmission 
order 
 
(parity bits are 
shown shaded) 

B 
Col-by-col 
transmission 
order 
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Interleaving 

message 

message crc 

k k k k 

k+p k+p k+p k+p 

k+p k+p k+p k+p 

Compute CRC 

Partition 

Apply ECC 
Correct errors 

 Check CRC 
Interleave 

B-way interleaved block 

Transmit 

Receive 

B-way interleaved block 

Deinterleave 

k k k k 

message crc 

 Deliver or discard 

errors 
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Framing 
•  The receiver needs to know 

–  the beginning of the B-way interleaved block in order to do 
deinterleaving 

–  the beginning of each ECC block in order to do error correction. 

–  Since the interleaved block is made up of B ECC blocks, knowing 
where the interleaved block begins automatically supplies the 
necessary start info for the ECC blocks 

•  8b10b encoding provides what we need!  Here’s what gets 
transmitted 
–  Prefix to help train clock recovery (alternating 0s/1s, …) 

–  8b10b sync symbol 

–  Packet data: B ECC blocks recoded as 8b10b symbols 
(after 8b10b decoding and error correction we get {#,data,chk}) 

–  Suffix to ensure transmitter doesn’t cutoff prematurely, receiver 
has time to process last packet before starting search for 
beginning of next packet 

–  On some channels: idle time (no transmission) 
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Our Recipe (so far) 

• Transmit 
– Packetize: split message into 

fixed-size blocks, add sequence 
numbers, checksum 

– SECC: split {#,data,chk} into k-
bit blocks, add parity bits to 
create n-bit code words with 
min Hamming distance of 3, B-
way interleaving 

– 8b10b encoding: provide 
synchronization info to locate 
start of packet and sufficient 
transitions for clock recovery 

– Convert each bit into 
samples_per_bit voltage 
samples 

• Receive 
– Perform clock recovery using 

transitions, derive bit stream 
from voltage samples 

– 8b10b decoding: locate sync, 
decode 

– SECC: deinterleave to spread 
out burst errors, perform error 
correction on n-bit blocks 
producing k-bit blocks 

– Packetize: verify checksum and 
discard faulty packets.  Keep 
track of received sequence 
numbers, ask for retransmit of 
missing packets.  Reassemble 
packets into original message. 
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Remaining agenda items 
•  With B ECC blocks per message, we can correct somewhere 

between 1 and B errors depending on where in the message 
they occur. 
–  Can we make an ECC that corrects up to B errors without any 

constraints where errors occur? 

–  Yes!  Reed-Solomon codes 
 

•  Framing is necessary, but the sync itself can’t be protected by 
an ECC scheme that requires framing. 
–  This makes life hard for channels with higher BERs 

–  Is there an error correction scheme that works on un-framed bit 
streams? 

–  Yes! Convolutional codes: encoding and the clever decoding 
scheme will be discussed next week. 
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In search of a better code 
•  Problem: information about a particular message unit (bit, 

byte, ..) is captured in just a few locations, i.e., the message 
unit and some number of parity units.  So a small but 
unfortunate set of errors might wipe out all the locations 
where that info resides, causing us to lose the original 
message unit. 
 

•  Potential Solution: figure out a way to spread the info in each 
message unit throughout all the code words in a block.  
Require only some fraction good code words to recover the 
original message. 
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Thought experiment… 
•  Suppose you had two 8-bit values to communicate: A, B 

 

•  We’d like an encoding scheme where each transmitted value 
included information about both A and B 
–  How about sending y = Ax + B for various values of x? 

–  Standardize on a particular sequence for x, known to both the 
transmitter and receiver.  That way, we don’t have to actually 
send the x’s – the receiver will know what they are.  For 
example, x = 1, 2, 3, 4, ... 

–  How many values do you need to solve for A and B? 

–  We’ll send extra to provide for recovery from errors… 
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Example 
•  Suppose you received four values from the transmitter y = 73, 

249, 321, 393, corresponding to x = 1, 2, 3 and 4 
–  4 Eqns: A·1+B=73,  A·2+B=249,  A·3+B=321,   A·4+B=393 

•  We need two of these equations to solve for A and B; there are 
six possible choices for which two to use 

•  Take each pair and solve for A and B 
 
 
 
 
 
 
 

•  Majority rules: A=72, B=105 
–  The received value 73 had an error 

–  If no errors: all six solutions for A and B would have matched 

! 

A "1+ B = 73
A " 2 + B = 249

! 

A "1+ B = 73
A " 3+ B = 321

! 

A "1+ B = 73
A " 4 + B = 393

! 

A " 2 + B = 249
A " 3+ B = 321

! 

A " 2 + B = 249
A " 4 + B = 393

! 

A " 3+ B = 321
A " 4 + B = 393

A=175, B=-102 A=124, B=-51 A=106.6, B=-33.6 

A=72, B=105 A=72, B=105 A=72, B=105 
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Spreading the wealth… 
•  Generalize this idea: oversampled polynomials.  Let 

 
   P(x) = m0 + m1x + m2x2 + … + mk-1xk-1 

 
where m0, m1, ..., mk-1 are the k message units to be encoded.  
Transmit value of polynomial at n different predetermined 
points v0, v1, ..., vn-1 : 
 
   P(v0), P(v1), P(v2), ..., P(vn-1)  

Use any k of the received values to construct a linear system 
of k equations which can then be solved for k unknowns m0, 
m1, ..., mk-1. Each transmitted value contains info about all 
mi. 

•  Note that using integer arithmetic, the P(v) values are 
numerically greater than the mi and so require more bits to 
represent than the mi.  In general the encoded message 
would require a lot more bits to send than the original 
message! 

6.02 Spring 2011 Lecture 9, Slide #19 

Solving for the mi  
•  Solving k linearly independent equations for the k unknowns 

(i.e., the mi): 
 
 
 
 
 
 
 
 
 

•  Solving a set of linear equations using Gaussian Elimination 
(multiplying rows, switching rows, adding multiples of rows to 
other rows) requires add, subtract, multiply and divide 
operations. 
 

•  These operations (in particular division) are only well defined 
over fields, e.g., rational numbers, real numbers, complex 
numbers -- not at all convenient to implement in hardware. 

  

! 

1 v0 v0
2 ! v0

k"1

1 v1 v1
2 ! v1

k"1

" " " # "
1 vk"1 vk"1

2 ! vk"1
k"1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

m0

m1
"

mk"1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

P(v0)
P(v1)
"

P(vk"1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

6.02 Spring 2011 Lecture 9, Slide #20 

Finite Fields to the Rescue  
•  Reed’s & Solomon’s idea: do all the arithmetic using a finite 

field (also called a Galois field).  If the mi have B bits, then 
use a finite field with order 2B so that there will be a field 
element corresponding to each possible value for mi. 
 

•  For example with B = 2, here are the tables for the various 
arithmetic operations for a finite field with 4 elements.  Note 
that every operation yields an element in the field, i.e., the 
result is the same size as the operands. 

+ 0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 

* 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 3 1 

3 0 3 1 2 

A -A A-1 

0 0 0 

1 1 1 

2 2 3 

3 3 2 

A + (-A) = 0 A * (A-1) = 1 
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How many values to send? 
 
•  Note that in a Galois field of order 2B there are at most 2B 

unique values v we can use to generate the P(v) 
–  if we send more than 2B values, some of the equations we might 

use when solving for the mi will not be linearly independent and 
we won’t have enough information to find a unique solution for 
the mi. 

–  Sending P(0) isn’t very interesting (only involves m0) 
 

•  Reed-Solomon codes use n = 2B-1 (n is the number of P(v) 
values we generate and send). 
–  For many applications B = 8, so n = 255 
–  A popular R-S code is (255,223), i.e., a code block consisting of 

223 8-bit data bytes + 32 check bytes 
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Use for error correction 
•  If one of the P(vi) is received incorrectly, if it’s used to solve 

for the mi, we’ll get the wrong result. 
 

•  So try all possible (n choose k) subsets of values and use 
each subset to solve for mi.  Choose solution set that gets the 
majority of votes. 
–  No winner? Uncorrectable error… throw away block. 

 

•  (n,k) code can correct up to (n-k)/2 errors since we need 
enough good values to ensure that the correct solution set 
gets a majority of the votes. 
–  R-S (255,223) code can correct up to 16 symbol errors; good for 

error bursts: 16 consecutive symbols = 128 bits! 
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Erasures are special 
•  If a particular received value is known to be erroneous (an 
“erasure”), don’t use it all! 
–  How to tell when received value is erroneous?  Sometimes there’s 

channel information, e.g., carrier disappears. 

–  See next slide for clever idea based on concatenated R-S codes 
 

•  (n,k) R-S code can correct n-k erasures since we only need k 
equations to solve for the k unknowns. 
 

•  Any combination of E errors and S erasures can be corrected 
so long as 2E + S ! n-k. 
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Example: CD error correction 
 

•  On a CD: two concatenated R-S codes 

28-byte block 28-byte block 28-byte block 
De-interleave 

Result: correct up to 3500-bit error bursts (2.4mm on CD surface) 

32-byte block 32-byte block 32-byte block ! 

(28,24) code 
Handles up to 
4 byte erasures 24-byte block 24-byte block 24-byte block 

De-interleave 
24-byte block 24-byte block 24-byte block 

32-byte block 32-byte block 32-byte block ! 
De-interleave 

28-byte block 28 erasures 28-byte block 

(32,28) code 
Handles up to 
2 byte errors 

Uncorrectable error 

errors 

erasures 


