
6.02 Spring 2011 Lecture 10, Slide #1

6.02 Spring 2011

Lecture #10

•  convolutional codes
•  state & trellis diagrams
•  most likely message to have been transmitted

6.02 Spring 2011 Lecture 10, Slide #2

Do We Need Better Channel Coding?

The graph shows how a rate !
“rectangular” block code
experimentally improves over
using no coding at all, especially
at higher SNRs (lower overall
BER).

But in low SNR environments,
there’s considerable room for
improvement.

Can we find more effective rate
! codes?

6.02 Spring 2011 Lecture 10, Slide #3 Phoning home using a k=15, rate=1/6 convolutional code 6.02 Spring 2011 Lecture 10, Slide #4

Convolutional Codes

•  Like the block codes discussed earlier, send parity
bits computed from blocks of message bits
–  Unlike block codes, don’t send message bits, only the

parity bits!

–  The code rate of a convolutional code tells you how many
parity bits are sent for each message bit. We’ll be talking
about rate 1/p codes.

–  Use a sliding window to select which message bits are
participating in the parity calculations. The width of the
window (in bits) is called the code’s constraint length.

0101100101100011…
!
!

p0[n] = x[n] ! x[n-1] ! x[n-2]

p1[n] = x[n] ! x[n-1]

6.02 Spring 2011 Lecture 10, Slide #5

Block diagram view

•  One often sees convolutional encoders described with a block
diagram like the following:

•  Think of this a “black box”: message in, parity out
–  Input bits arrive one-at-a-time on the wire on the left

–  The box computes the parity bits using the incoming bit and the
k-1 previous message bits

–  At the end of the bit time, all the saved message bits are shifted
right one location and the incoming bit moves into the left locn.

x[n-1] x[n-2] x[n]

+

+

mod 2

mod 2
p0[n]

p1[n]

The x[n-i] values
are referred to
as the “state” of
the encoder.

6.02 Spring 2011 Lecture 10, Slide #6

Example: xmit 1011

0 0 1

1

1

Processing x[0]

1 0 0

1

1

Processing x[1]

0 1 1

0

1

Processing x[2]

1 0 1

0

0

Processing x[3]

6.02 Spring 2011 Lecture 10, Slide #7

Parity Bit Equations

•  A convolutional code generates sequences of parity bits from
sequences of message bits:

•  k is the constraint length of the code
–  The larger k is, the more times a particular message bit is used

when calculating parity bits
 → greater redundancy
 → better error correction possibilities

•  gi is the k-element generator polynomial for parity bit pi.
–  Each element gi[n] is either 0 or 1

–  More than one parity sequence can be generated from the same
message; a common choice is to use 2 generator polynomials

!

pi n[] = gi
j=0

k"1

j[]x n " j[]
$

%
& &

'

(
)) mod2

I can see why they call
it a convolutional code

6.02 Spring 2011 Lecture 10, Slide #8

Convolutional Codes (cont’d.)

•  We’ll transmit the parity sequences, not the message itself
–  As we’ll see, we can recover the message sequences from the

parity sequences

–  Each message bit is “spread across” k elements of each parity
sequence, so the parity sequences are better protection against
bit errors than the message sequence itself

•  If we’re using multiple generators, construct the transmit
sequence by interleaving the bits of the parity sequences:

•  Code rate is 1/number_of_generators
–  2 generator polynomials → rate = !

–  Engineering tradeoff: using more generator polynomials
improves bit-error correction but decreases the number of
message bits/sec that can be transmitted

!

xmit = p0[0], p1[0], p0[1], p1[1], p0[2], p1[2],…

6.02 Spring 2011 Lecture 10, Slide #9

Example

•  Using two generator polynomials:
–  g0 = 1, 1, 1, 0, 0, … abbreviated as 111 for k=3 code
–  g1 = 1, 1, 0, 0, 0, … abbreviated as 110 for k=3 code

•  Writing out the equations for the parity sequences:
–  p0[n] = (x[n] + x[n-1] + x[n-2]) mod 2

–  p1[n] = (x[n] + x[n-1]) mod 2

•  Let x[n] = [1,0,1,1,…]; as usual x[n]=0 when n<0:
–  p0[0] = (1 + 0 + 0) mod 2 = 1, p1[0] = (1 + 0) mod 2 = 1

–  p0[1] = (0 + 1 + 0) mod 2 = 1, p1[1] = (0 + 1) mod 2 = 1

–  p0[2] = (1 + 0 + 1) mod 2 = 0, p1[2] = (1 + 0) mod 2 = 1

–  p0[3] = (1 + 1 + 0) mod 2 = 0, p1[3] = (1 + 1) mod 2 = 0

•  Transmit: 1, 1, 1, 1, 0, 1, 0, 0, …

6.02 Spring 2011 Lecture 10, Slide #10

“Good” generator polynomials

www.complextoreal.com

6.02 Spring 2011 Lecture 10, Slide #11

State Machine View

•  Example: k=3, rate ! convolutional code
•  States labeled with x[n-1] x[n-2]

•  Arcs labeled with x[n]/p0p1
•  msg=101100; xmit = 11 11 01 00 01 10

00 10

01 11

0/00

1/11

1/10
0/01

0/10 1/01

0/11 1/00

STARTING STATE

The state machine is the same
for all k=3 codes. Only the pi
labels change depending on
number and values for the
generator polynomials.

6.02 Spring 2011 Lecture 10, Slide #12

State Machines & Trellises

•  Example: k=3, rate ! convolutional code
–  G0 = 111: p0 = 1*x[n] ! 1*x[n-1] ! 1*x[n-2]
–  G1 = 110: p1 = 1*x[n] ! 1*x[n-1] ! 0*x[n-2]

•  States labeled with x[n-1] x[n-2]

•  Arcs labeled with x[n]/p0p1

00 10

01 11

0/00

1/11

1/10
0/01

0/10 1/01

0/11 1/00

STARTING STATE

2k-1
states

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

time x[n-1]x[n-2]

Addition mod 2
aka XOR

6.02 Spring 2011 Lecture 10, Slide #13

Trellis View @ Transmitter

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

time

x[n-1]x[n-2]

x[n] 1 0 1 1 0 0

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

6.02 Spring 2011 Lecture 10, Slide #14

Using Convolutional Codes

•  Transmitter
–  Beginning at starting state, processes message bit-by-bit
–  For each message bit: makes a state transition, sends pi

–  Pad message with k-1 zeros to ensure return to starting state

•  Receiver
–  Doesn’t have direct knowledge of transmitter’s state transitions;

only knows (possibly corrupted) received pi

–  Must find most likely sequence of transmitter states that could
have generated the received pi

–  If BER is small, prob(more errors) < prob(fewer errors)

•  Most likely message sequence is the one that generated the
sequence of parity bits with the smallest Hamming distance
from the actual received pi, i.e., where we minimize the
number of bit errors that explains how the transmit sequence
was corrupted to produce the received pi

6.02 Spring 2011 Lecture 10, Slide #15

Example

•  Using k=3, rate !
code from earlier
slides

•  Received:
111011000110

•  Some errors have
occurred…

•  What’s the 4-bit
message?

•  Look for message
whose xmit bits are
closest to rcvd bits

Msg Xmit* Rcvd d

0000 000000000000

111011000110

7
0001 000000111110 8
0010 000011111000 8
0011 000011010110 4
0100 001111100000 6
0101 001111011110 5
0110 001101001000 7
0111 001100100110 6
1000 111110000000 4
1001 111110111110 5
1010 111101111000 7
1011 111101000110 2
1100 110001100000 5
1101 110001011110 4
1110 110010011000 6
1111 110010100110 3

Most likely: 1011

*Msg padded with 2 zeroes before xmit
6.02 Spring 2011 Lecture 10, Slide #16

Finding the Most-likely Path

Given the received parity bits, the receiver must find the most-
likely sequence of transmitter states, i.e., the path through the
trellis that minimizes the Hamming distance between the
received parity bits and the parity bits the transmitter would
have sent had it followed that state sequence.

00

01

10

11

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

