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6.02 Spring 2011 

Lecture #10 

•  convolutional codes   
•  state & trellis diagrams 
•  most likely message to have been transmitted 
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Do We Need Better Channel Coding? 

The graph shows how a rate !  
“rectangular” block code 
experimentally improves over 
using no coding at all, especially 
at higher SNRs (lower overall 
BER). 
 
But in low SNR environments, 
there’s considerable room for 
improvement. 
 
Can we find more effective rate 
! codes? 
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Convolutional Codes 

•  Like the block codes discussed earlier, send parity 
bits computed from blocks of message bits 
–  Unlike block codes, don’t send message bits, only the 

parity bits! 

–  The code rate of a convolutional code tells you how many 
parity bits are sent for each message bit.  We’ll be talking 
about rate 1/p codes. 

–  Use a sliding window to select which message bits are 
participating in the parity calculations.  The width of the 
window (in bits) is called the code’s constraint length. 

0101100101100011… 
! 
! 

p0[n] = x[n] ! x[n-1] ! x[n-2] 

p1[n] = x[n] ! x[n-1] 
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Block diagram view 

•  One often sees convolutional encoders described with a block 
diagram like the following: 
 
 
 
 
 
 
 
 
 

•  Think of this a “black box”: message in, parity out 
–  Input bits arrive one-at-a-time on the wire on the left 

–  The box computes the parity bits using the incoming bit and the 
k-1 previous message bits 

–  At the end of the bit time, all the saved message bits are shifted 
right one location and the incoming bit moves into the left locn. 

x[n-1] x[n-2] x[n] 

+ 

+ 

mod 2 

mod 2 
p0[n] 

p1[n] 

The x[n-i] values 
are referred to 
as the “state” of 
the encoder. 
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Example: xmit 1011 
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Parity Bit Equations 

•  A convolutional code generates sequences of parity bits from 
sequences of message bits: 
 
 
 
 

•  k is the constraint length of the code 
–  The larger k is, the more times a particular message bit is used 

when calculating parity bits 
 → greater redundancy 
 → better error correction possibilities 
 

•  gi is the k-element generator polynomial for parity bit pi. 
–  Each element gi[n] is either 0 or 1 

–  More than one parity sequence can be generated from the same 
message; a common choice is to use 2 generator polynomials 

! 

pi n[ ] = gi
j=0

k"1

# j[ ]x n " j[ ]
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I can see why they call 
it a convolutional code 
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Convolutional Codes (cont’d.) 

•  We’ll transmit the parity sequences, not the message itself 
–  As we’ll see, we can recover the message sequences from the 

parity sequences 

–  Each message bit is “spread across” k elements of each parity 
sequence, so the parity sequences are better protection against 
bit errors than the message sequence itself 
 

•  If we’re using multiple generators, construct the transmit 
sequence by interleaving the bits of the parity sequences: 
 
 
 

•  Code rate is 1/number_of_generators 
–  2 generator polynomials → rate = ! 

–  Engineering tradeoff: using more generator polynomials 
improves bit-error correction but decreases the number of 
message bits/sec that can be transmitted 

  

! 

xmit = p0[0], p1[0], p0[1], p1[1], p0[2], p1[2],…
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Example 

•  Using two generator polynomials: 
–  g0 = 1, 1, 1, 0, 0, …  abbreviated as 111 for k=3 code 
–  g1 = 1, 1, 0, 0, 0, …  abbreviated as 110 for k=3 code 

 

•  Writing out the equations for the parity sequences: 
–  p0[n] = (x[n] + x[n-1] + x[n-2]) mod 2 

–  p1[n] = (x[n] + x[n-1]) mod 2 
 

•  Let x[n] = [1,0,1,1,…]; as usual x[n]=0 when n<0: 
–  p0[0] = (1 + 0 + 0) mod 2 = 1,  p1[0] = (1 + 0) mod 2 = 1 

–  p0[1] = (0 + 1 + 0) mod 2 = 1,  p1[1] = (0 + 1) mod 2 = 1 

–  p0[2] = (1 + 0 + 1) mod 2 = 0,  p1[2] = (1 + 0) mod 2 = 1 

–  p0[3] = (1 + 1 + 0) mod 2 = 0,  p1[3] = (1 + 1) mod 2 = 0 
 

•  Transmit: 1, 1, 1, 1, 0, 1, 0, 0, … 
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“Good” generator polynomials 

www.complextoreal.com 
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State Machine View 

•  Example: k=3, rate ! convolutional code 
•  States labeled with x[n-1] x[n-2] 

•  Arcs labeled with x[n]/p0p1 
•  msg=101100; xmit = 11 11 01 00 01 10 

00 10 

01 11 

0/00 

1/11 

1/10 
0/01 

0/10 1/01 

0/11 1/00 

STARTING STATE 

The state machine is the same 
for all k=3 codes.  Only the pi 
labels change depending on 
number and values for the 
generator polynomials. 
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State Machines & Trellises 

•  Example: k=3, rate ! convolutional code 
–  G0 = 111: p0 = 1*x[n] ! 1*x[n-1] ! 1*x[n-2] 
–  G1 = 110: p1 = 1*x[n] ! 1*x[n-1] ! 0*x[n-2] 

•  States labeled with x[n-1] x[n-2] 

•  Arcs labeled with x[n]/p0p1 

00 10 

01 11 

0/00 

1/11 

1/10 
0/01 

0/10 1/01 

0/11 1/00 

STARTING STATE 

2k-1 
states 

00 

01 

10 

11 

0/00 
1/11 

0/10 
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time x[n-1]x[n-2] 

Addition mod 2 
aka XOR 
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Trellis View @ Transmitter 
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Using Convolutional Codes 

•  Transmitter 
–  Beginning at starting state, processes message bit-by-bit 
–  For each message bit: makes a state transition, sends pi 

–  Pad message with k-1 zeros to ensure return to starting state 
 

•  Receiver 
–  Doesn’t have direct knowledge of transmitter’s state transitions; 

only knows (possibly corrupted) received pi 

–  Must find most likely sequence of transmitter states that could 
have generated the received pi 

–  If BER is small, prob(more errors) < prob(fewer errors) 

•  Most likely message sequence is the one that generated the 
sequence of parity bits with the smallest Hamming distance 
from the actual received pi, i.e., where we minimize the 
number of bit errors that explains how the transmit sequence 
was corrupted to produce the received pi  
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Example 

•  Using k=3, rate ! 
code from earlier 
slides 

•  Received: 
111011000110 

•  Some errors have 
occurred…  

•  What’s the 4-bit 
message? 

•  Look for message 
whose xmit bits are 
closest to rcvd bits 

 

Msg Xmit* Rcvd d 

0000 000000000000 

111011000110 

7 
0001 000000111110 8 
0010 000011111000 8 
0011 000011010110 4 
0100 001111100000 6 
0101 001111011110 5 
0110 001101001000 7 
0111 001100100110 6 
1000 111110000000 4 
1001 111110111110 5 
1010 111101111000 7 
1011 111101000110 2 
1100 110001100000 5 
1101 110001011110 4 
1110 110010011000 6 
1111 110010100110 3 

Most likely: 1011 

*Msg padded with 2 zeroes before xmit 
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Finding the Most-likely Path 

Given the received parity bits, the receiver must find the most-
likely sequence of transmitter states, i.e., the path through the 
trellis that minimizes the Hamming distance between the 
received parity bits and the parity bits the transmitter would 
have sent had it followed that state sequence. 
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