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6.02 Spring 2011 
Lecture #11 

•  state machines & trellises 
•  path and branch metrics 
•  Viterbi algorithm: add-compare-select 
•  hard decisions vs. soft decisions 
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Trellis View @ Transmitter 
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Finding the Most-likely Path 

Given the received parity bits, the receiver must find the most-
likely sequence of transmitter states, i.e., the path through the 
trellis that minimizes the Hamming distance between the 
received parity bits and the parity bits the transmitter would 
have sent had it followed that state sequence. 
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Processing 1st pair of parity bits 

• Transmitter is known to be in state 00 at start of message. 

•  If next message bit 0, next state is 00, transmit 00 
– So receiving 11 means there have been two errors in the channel 

•  If next message bit is 1, next state is 10, transmit 11 
– So receiving 11 means there have been no errors in the channel 
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Processing 2nd pair of parity bits 

• Consider transitions for each possible transmitter state 

• Compute Hamming distance between what would have been 
transmitted and what was actually received → indicates 
number of errors that had to have happened in this case. 

• Enter total errors along path in each destination state in next 
column of the trellis, color transition arc red 
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Branch Metrics, Path Metrics 

• The red numbers for HD(xmit,rcvd) are called branch metrics 
→ indicate number of errors if this arc was the true path 

• The numbers in the trellis boxes are called path metrics 
→ indicate total number of errors along path ending at box 

• The red arrows indicate sequence of transmitter states that 
end at a particular column and state. 
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Processing 3rd pair of parity bits 

What if there are two possible paths to a particular state? 

• Consider each path separately: compute total errors along each 
path (e.g., one path to 00 has 5 total errors, the other 2 errors) 

• Select path with fewest total errors as the most-likely path 

• Steps: add branch metrics, compare total errors, select path 
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What Can We Tell About Message? 

Hmm, at this point all ending states are equally likely, each 
corresponding to a path with 2 errors.  Receiver doesn’t (yet) 
have enough information to decode first 3 message bits. 
 
Can receiver tell anything about the message? 
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Survivor Paths 

Receiver can make some deductions: 
 
Some earlier states are no longer part of any most-likely path.  
We can eliminate partial paths leading to those states since they 
will not be part of the final most-likely path.  Do this 
recursively… 
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Processing 4th pair of parity bits 

The usual: 

• Add branch metrics to previous total errors 
• Compare paths arriving at destination state 

• Select path with smallest total errors as most-likely path 
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Processing 5th pair of parity bits 

When there are “ties” (sum of metrics are the same) 

–  Make an arbitrary choice about incoming path 
–  If state is not on most-likely path: choice doesn’t matter 

–  If state is on most-likely path: choice may matter and 
error correction has failed 
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Processing 6th pair of parity bits 

When we reach end of received parity bits: 

–  Each state’s path metric indicates how many errors have 
happened on most-likely path to state 

–  Most-likely final state has smallest path metric 

–  Ties mean end of message uncertain (but survivor paths 
may merge to a unique path earlier in message) 
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Traceback 

Use most-likely path to determine message bits, tracing path 
backwards starting with most-likely end state.  In this example, 
the transmitter states along most-likely path, from left to right: 

10 01 10 11 01 00 
Message bits from high-order state bit: 

101100 
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Viterbi Algorithm 

•  Want: Most likely message sequence 

•  Have: (possibly corrupted) received parity sequences 
•  Viterbi algorithm for a given k and r: 

–  Works incrementally to compute most likely message sequence 

–  Uses two metrics 

•  Branch metric: BM(xmit,rcvd) measures likelihood that 
transmitter sent xmit given that we’ve received rcvd. 
–  “Hard decision”: use digitized bits, compute Hamming distance 

between xmit and rcvd.  Smaller distance is more likely if BER is 
small 

–  “Soft decision”: use received voltages (more later…) 

•  Path metric: PM[s,i] for each state s of the 2k-1 transmitter 
states and bit time i where 0 ! i < len(message). 
–  PM[s,i] = most likely BM(xmitm,received parity) over all message 

sequences m that leave transmitter in state s at time i  
–  PM[s,i+1] computed from PM[s,i] and p0[i],…,pr-1[i] 
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Hard-decision Branch Metric 

•  BM = Hamming distance 
between expected parity bits and 
received parity bits 

•  Compute BM for each transition 
arc in trellis 

–  Example: received parity = 00 

–  BM(00,00) = 0 
BM(01,00) = 1 
BM(10,00) = 1 
BM(11,00) = 2 

•  Will be used in computing 
PM[s,i+1] from PM[s,i]. 

•  We’ll want most likely BM, 
which, since we’re using 
Hamming distance, means 
minimum BM. 
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Computing PM[s,i+1] 

Starting point: we’ve computed  
PM[s,i], shown graphically as label in 
trellis box for each state at time i. 

 
Example: PM[00,i] = 1 means there 
was 1 bit error detected when 
comparing received parity bits to 
what would have been transmitted 
when sending the most likely 
message, considering all messages 
that leave the transmitter in state 00 
at time i. 

 

Q: What’s the most likely state s for 
the transmitter at time i? 

A: state 00 (smallest PM[s,i]) 
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Computing PM[s,i+1] cont’d. 

Q: If the transmitter is in state s at 
time i+1, what state(s) could it have 
been in at time i? 

 
A: For each state s, there are two 
predecessor states α and β in the 
trellis diagram 
 
Example: for state 01, α=10 and β=11. 
 

Any message sequence that leaves 
the transmitter in state s at time i+1 
must have left the transmitter in 
state α or state β at time i. 
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Computing PM[s,i+1] cont’d. 

Example cont’d: to arrive in state 01 at 
time i+1, either 

1) The transmitter was in state 10 at 
time i and the ith message bit was a 
0.  If that’s the case, the transmitter 
sent 11 as the parity bits and there 
were 2 bit errors since we received 
00.  Total bit errors = PM[10,i] + 2 = 
5   OR 

2) The transmitter was in state 11 at 
time i and the ith message bit was a 
0.  If that’s the case, the transmitter 
sent 01 as the parity bits and there 
was 1 bit error since we received 00. 
Total bit errors = PM[11,i] + 1 = 3 

Which is mostly likely? 
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Computing PM[s,i+1] cont’d. 

Formalizing the computation: 

 
PM[s,i+1] = min(PM[α,i] + BM[α→s], 
                         PM[β,i] + BM[β→s]) 

 

Example: 

PM[01,i+1] = min(PM[10,i] + 2, 

                           PM[11,i] + 1) 
                  = min(3+ 2,2+1) = 3 

Notes: 

1)  Remember with arc was min; saved 
arcs will form a path through trellis 

2)  If both arcs have same sum, break 
tie arbitrarily (e.g., when computing 
PM[11,i+1]) 
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Viterbi Algorithm Summary 

•  Branch metrics measure the likelihood by comparing received 
parity bits to possible transmitted parity bits computed from 
possible messages. 
 

•  Path metric PM[s,i] measures the likelihood of the transmitter 
being in state s at time i assuming the mostly likely message 
of length i that leaves the transmitter in state s. 
 

•  Most likely message?  The one that produces the most likely 
PM[s,N]. 
 

•  At any given time there are 2k-1 most-likely messages we’re 
tracking → time complexity of algorithm grows exponentially 
with constraint length k. 
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Hard Decisions 

•  As we receive each bit it’s immediately digitized to “0” or “1” 
by comparing it against a threshold voltage 
–  We lose the information about how “good” the bit is: 

a “1” at .9999V is treated the same as a “1” at .5001V 
 

•  The branch metric used in the Viterbi decoder is the 
Hamming distance between the digitized received voltages 
and the expected parity bits 
–  This is called hard-decision Viterbi decoding 

 

•  Throwing away information is (almost) never a good idea 
when making decisions 
–  Can we come up with a better branch metric that uses more 

information about the received voltages? 
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Soft Decisions 

•  Let’s limit the received voltage range to [0.0,1.0] 
–  Veff = max(0.0, min(1.0, Vreceived)) 
–  Voltages outside this range are “good” 0’s or 1’s 

•  Define our “soft” branch metric as the square of the 
Euclidian distance between received Veff and expected 
voltages 
 
 
 
 
 
 
 

•  Soft-decision decoder chooses path that minimizes sum of the 
squares of the Euclidian distances between received and 
expected voltages 
–  Different branch metric but otherwise the same recipe 

0.0,0.0 
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Vp0,Vp1 “Soft” metric when 
expected parity bits 
are 0,0 

See §9.3 
In Notes 
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More Work, Better BER 
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Code performance 

Bit-energy/Noise (logarithmic scale) 

Source: Butman, Deutsch, Miller, “Performance of Concatenated Codes for Deep Space Missions” 


