
6.02 Spring 2011 Lecture 11, Slide #1

6.02 Spring 2011
Lecture #11

•  state machines & trellises
•  path and branch metrics
•  Viterbi algorithm: add-compare-select
•  hard decisions vs. soft decisions

6.02 Spring 2011 Lecture 11, Slide #2

Trellis View @ Transmitter

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

time x[n-1]x[n-2]

x[n] 1 0 1 1 0 0

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

Send: 11 11 01 00 01 10

6.02 Spring 2011 Lecture 11, Slide #3

Finding the Most-likely Path

Given the received parity bits, the receiver must find the most-
likely sequence of transmitter states, i.e., the path through the
trellis that minimizes the Hamming distance between the
received parity bits and the parity bits the transmitter would
have sent had it followed that state sequence.

00

01

10

11

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

6.02 Spring 2011 Lecture 11, Slide #4

Processing 1st pair of parity bits

• Transmitter is known to be in state 00 at start of message.

•  If next message bit 0, next state is 00, transmit 00
– So receiving 11 means there have been two errors in the channel

•  If next message bit is 1, next state is 10, transmit 11
– So receiving 11 means there have been no errors in the channel

2

0

00

01

10

11

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

6.02 Spring 2011 Lecture 11, Slide #5

Processing 2nd pair of parity bits

• Consider transitions for each possible transmitter state

• Compute Hamming distance between what would have been
transmitted and what was actually received → indicates
number of errors that had to have happened in this case.

• Enter total errors along path in each destination state in next
column of the trellis, color transition arc red

2

0

00

01

10

11

00
11

10

01

00
11

01
10

3

1

3

1

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

1
1

0
2

1
1

2
0

6.02 Spring 2011 Lecture 11, Slide #6

Branch Metrics, Path Metrics

• The red numbers for HD(xmit,rcvd) are called branch metrics
→ indicate number of errors if this arc was the true path

• The numbers in the trellis boxes are called path metrics
→ indicate total number of errors along path ending at box

• The red arrows indicate sequence of transmitter states that
end at a particular column and state.

2

0

00

01

10

11

00
11

10

01

00
11

01
10

3

1

3

1

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

1
1

0
2

1
1

2
0

6.02 Spring 2011 Lecture 11, Slide #7

Processing 3rd pair of parity bits

What if there are two possible paths to a particular state?

• Consider each path separately: compute total errors along each
path (e.g., one path to 00 has 5 total errors, the other 2 errors)

• Select path with fewest total errors as the most-likely path

• Steps: add branch metrics, compare total errors, select path

2

0

00

01

10

11

00
11

10

01

00
11

01
10

3

1

3

1

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

2
0

1
1

0
2

1
1

6.02 Spring 2011 Lecture 11, Slide #8

What Can We Tell About Message?

Hmm, at this point all ending states are equally likely, each
corresponding to a path with 2 errors. Receiver doesn’t (yet)
have enough information to decode first 3 message bits.

Can receiver tell anything about the message?

2

0

00

01

10

11

00
11

10

01

00
11

01
10

3

1

3

1

00
11

10

01

00
11

01
10

2

2

2

2

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

6.02 Spring 2011 Lecture 11, Slide #9

Survivor Paths

Receiver can make some deductions:

Some earlier states are no longer part of any most-likely path.
We can eliminate partial paths leading to those states since they
will not be part of the final most-likely path. Do this
recursively…

2

0

00

01

10

11

00
11

10

01

00
11

01
10

3

1

3

1

00
11

10

01

00
11

01
10

2

2

2

2

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

6.02 Spring 2011 Lecture 11, Slide #10

Processing 4th pair of parity bits

The usual:

• Add branch metrics to previous total errors
• Compare paths arriving at destination state

• Select path with smallest total errors as most-likely path

0

00

01

10

11

00
11

10

01

00
11

01
10

1

1

00
11

10

01

00
11

01
10

2

2

2

2

00
11

10

01

00
11

01
10

2

3

3

2

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

0
2

1
1

2
0

1
1

6.02 Spring 2011 Lecture 11, Slide #11

Processing 5th pair of parity bits

When there are “ties” (sum of metrics are the same)

–  Make an arbitrary choice about incoming path
–  If state is not on most-likely path: choice doesn’t matter

–  If state is on most-likely path: choice may matter and
error correction has failed

0

00

01

10

11

00
11

10

01

00
11

01
10

1

1

00
11

10

01

00
11

01
10

2

2

2

2

00
11

10

01

00
11

01
10

2

3

3

2

00
11

10

01

00
11

01
10

3

2

3

4

00
11

10

01

00
11

01
10

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

1
1

2
0

1
1

0
2

6.02 Spring 2011 Lecture 11, Slide #12

Processing 6th pair of parity bits

When we reach end of received parity bits:

–  Each state’s path metric indicates how many errors have
happened on most-likely path to state

–  Most-likely final state has smallest path metric

–  Ties mean end of message uncertain (but survivor paths
may merge to a unique path earlier in message)

0

00

01

10

11

00
11

10

01

00
11

01
10

1

00
11

10

01

00
11

01
10

2

2

00
11

10

01

00
11

01
10

2

2

00
11

10

01

00
11

01
10

3

2

3

4

00
11

10

01

00
11

01
10

2

4

4

4

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

1
1

0
2

1
1

2
0

6.02 Spring 2011 Lecture 11, Slide #13

Traceback

Use most-likely path to determine message bits, tracing path
backwards starting with most-likely end state. In this example,
the transmitter states along most-likely path, from left to right:

10 01 10 11 01 00
Message bits from high-order state bit:

101100

0

00

01

10

11

00
11

10

01

00
11

01
10

1

00
11

10

01

00
11

01
10

2

2

00
11

10

01

00
11

01
10

2

2

00
11

10

01

00
11

01
10

2

3

00
11

10

01

00
11

01
10

2

4

4

4

00
11

10

01

00
11

01
10

11 Rcvd: 10 11 00 01 10

6.02 Spring 2011 Lecture 11, Slide #14

Viterbi Algorithm

•  Want: Most likely message sequence

•  Have: (possibly corrupted) received parity sequences
•  Viterbi algorithm for a given k and r:

–  Works incrementally to compute most likely message sequence

–  Uses two metrics

•  Branch metric: BM(xmit,rcvd) measures likelihood that
transmitter sent xmit given that we’ve received rcvd.
–  “Hard decision”: use digitized bits, compute Hamming distance

between xmit and rcvd. Smaller distance is more likely if BER is
small

–  “Soft decision”: use received voltages (more later…)

•  Path metric: PM[s,i] for each state s of the 2k-1 transmitter
states and bit time i where 0 ! i < len(message).
–  PM[s,i] = most likely BM(xmitm,received parity) over all message

sequences m that leave transmitter in state s at time i
–  PM[s,i+1] computed from PM[s,i] and p0[i],…,pr-1[i]

6.02 Spring 2011 Lecture 11, Slide #15

Hard-decision Branch Metric

•  BM = Hamming distance
between expected parity bits and
received parity bits

•  Compute BM for each transition
arc in trellis

–  Example: received parity = 00

–  BM(00,00) = 0
BM(01,00) = 1
BM(10,00) = 1
BM(11,00) = 2

•  Will be used in computing
PM[s,i+1] from PM[s,i].

•  We’ll want most likely BM,
which, since we’re using
Hamming distance, means
minimum BM.

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

1
1

0
2

1
1

6.02 Spring 2011 Lecture 11, Slide #16

Computing PM[s,i+1]

Starting point: we’ve computed
PM[s,i], shown graphically as label in
trellis box for each state at time i.

Example: PM[00,i] = 1 means there
was 1 bit error detected when
comparing received parity bits to
what would have been transmitted
when sending the most likely
message, considering all messages
that leave the transmitter in state 00
at time i.

Q: What’s the most likely state s for
the transmitter at time i?

A: state 00 (smallest PM[s,i])

1

3

3

2

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

1
1

0
2

1
1

6.02 Spring 2011 Lecture 11, Slide #17

Computing PM[s,i+1] cont’d.

Q: If the transmitter is in state s at
time i+1, what state(s) could it have
been in at time i?

A: For each state s, there are two
predecessor states α and β in the
trellis diagram

Example: for state 01, α=10 and β=11.

Any message sequence that leaves
the transmitter in state s at time i+1
must have left the transmitter in
state α or state β at time i.

1

3

3

2

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

1
1

0
2

1
1

6.02 Spring 2011 Lecture 11, Slide #18

Computing PM[s,i+1] cont’d.

Example cont’d: to arrive in state 01 at
time i+1, either

1) The transmitter was in state 10 at
time i and the ith message bit was a
0. If that’s the case, the transmitter
sent 11 as the parity bits and there
were 2 bit errors since we received
00. Total bit errors = PM[10,i] + 2 =
5 OR

2) The transmitter was in state 11 at
time i and the ith message bit was a
0. If that’s the case, the transmitter
sent 01 as the parity bits and there
was 1 bit error since we received 00.
Total bit errors = PM[11,i] + 1 = 3

Which is mostly likely?

1

3

3

2

?

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

1
1

0
2

1
1

6.02 Spring 2011 Lecture 11, Slide #19

Computing PM[s,i+1] cont’d.

Formalizing the computation:

PM[s,i+1] = min(PM[α,i] + BM[α→s],
 PM[β,i] + BM[β→s])

Example:

PM[01,i+1] = min(PM[10,i] + 2,

 PM[11,i] + 1)
 = min(3+ 2,2+1) = 3

Notes:

1)  Remember with arc was min; saved
arcs will form a path through trellis

2)  If both arcs have same sum, break
tie arbitrarily (e.g., when computing
PM[11,i+1])

1

3

3

2

1

3

3

3

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

1
1

0
2

1
1

6.02 Spring 2011 Lecture 11, Slide #20

Viterbi Algorithm Summary

•  Branch metrics measure the likelihood by comparing received
parity bits to possible transmitted parity bits computed from
possible messages.

•  Path metric PM[s,i] measures the likelihood of the transmitter
being in state s at time i assuming the mostly likely message
of length i that leaves the transmitter in state s.

•  Most likely message? The one that produces the most likely
PM[s,N].

•  At any given time there are 2k-1 most-likely messages we’re
tracking → time complexity of algorithm grows exponentially
with constraint length k.

6.02 Spring 2011 Lecture 11, Slide #21

Hard Decisions

•  As we receive each bit it’s immediately digitized to “0” or “1”
by comparing it against a threshold voltage
–  We lose the information about how “good” the bit is:

a “1” at .9999V is treated the same as a “1” at .5001V

•  The branch metric used in the Viterbi decoder is the
Hamming distance between the digitized received voltages
and the expected parity bits
–  This is called hard-decision Viterbi decoding

•  Throwing away information is (almost) never a good idea
when making decisions
–  Can we come up with a better branch metric that uses more

information about the received voltages?

6.02 Spring 2011 Lecture 11, Slide #22

Soft Decisions

•  Let’s limit the received voltage range to [0.0,1.0]
–  Veff = max(0.0, min(1.0, Vreceived))
–  Voltages outside this range are “good” 0’s or 1’s

•  Define our “soft” branch metric as the square of the
Euclidian distance between received Veff and expected
voltages

•  Soft-decision decoder chooses path that minimizes sum of the
squares of the Euclidian distances between received and
expected voltages
–  Different branch metric but otherwise the same recipe

0.0,0.0

0.0,1.0 1.0,1.0

1.0,0.0

Vp0,Vp1 “Soft” metric when
expected parity bits
are 0,0

See §9.3
In Notes

6.02 Spring 2011 Lecture 11, Slide #23

More Work, Better BER

6.02 Spring 2011 Lecture 11, Slide #24

Code performance

Bit-energy/Noise (logarithmic scale)

Source: Butman, Deutsch, Miller, “Performance of Concatenated Codes for Deep Space Missions”

