
6.02 Spring 2011 Lecture 13, Slide #1

6.02 Spring 2011

Lecture #13

•  unslotted Aloha
•  carrier sense, contention windows
•  code division glimpse

6.02 Spring 2011 Lecture 13, Slide #2

Slotted Aloha Summary

•  Assumptions
–  Time is divided into slots
–  Transmissions begin on slot boundaries

–  Packets are 1 slot long

•  Choose to transmit packet with probability p
–  Each node uses collisions/success to adjust p

–  Adjust p between pmin (avoid starvation) and pmax (avoid capture)

–  On collision p ← max(pmin,p/2), on success p ← min(pmax,2*p)

•  Utilization = throughput achieved/maximum data rate
–  U = prob(exactly one transmission in a slot)

 = N*p*(1-p)N-1, where N is number of backlogged nodes
–  Maximized when p = 1/N, Umax = (1 – 1/N)N-1

–  As N → !, Umax→ 1/e ! 37%

–  While each node’s p is never exactly 1/N, the goal is to have its
average value over modest intervals be approximately 1/N.

6.02 Spring 2011 Lecture 13, Slide #3

Unslotted Aloha

•  Packets take T time slots to transmit
–  As slots get smaller and T grows, approximates transmission at

arbitrary times.

•  Collisions are no longer “perfect”
–  Any overlap between multi-slot packets is a collision

–  Larger window of vulnerability to other transmissions

okay okay

packet

T slots T－1 slots

Any other packet transmitted in these 2T－1
time slots will collide with target packet

6.02 Spring 2011 Lecture 13, Slide #4

Utilization in Unslotted Aloha

Probability of no transmission for 2T－1 slots:

1! p()2T!1

Utilization = throughput/maximum rate:

Uunslotted Aloha !
Np 1" p() 2T"1()N"1

1 T
= TNp 1" p() 2T"1()N"1

Probability of a sender experiencing no collisions:

! p 1" p()2T"2#
$

%
& 1" p()2T"1#
$

%
&
N"1

= p(1" p)(2T"1)N"1

= for nodes that try to send new packet while busy with last one!

6.02 Spring 2011 Lecture 13, Slide #5

Umax for Unslotted Aloha

Maximization with respect to p:

log …() = const + log(p)+ 2T !1()N !1"# $%log(1! p)

Derivative:

1
p
+

2T !1()N !1
1! p

, which equals 0 at p = 1
2T !1()N

Plugging back into U:

Umax =
T

2T !1
1! 1

2T !1()N
"

#
$$

%

&
''

2T!1()N!1

For large N: Umax !
T

2T "1
#

$
%

&

'
(
1
e

For large N, T: Umax !
1
2e

Half the utilization of slotted Aloha;
makes sense: twice the window of vulnerability 6.02 Spring 2011 Lecture 13, Slide #6

Simulation of Unslotted Aloha

python PS6_3.py –r –n 10 –t 100000 --pmin=.005 --pmax=0.8 –s 10

Utilization = .21, Fairness = .99

6.02 Spring 2011 Lecture 13, Slide #7

Carrier Sense

•  Reduce collisions with on-going transmissions by
transmitting only if channel appears not to be busy.

•  For large T (slots/packet) if channel is busy this cycle, the
same sender will probably be transmitting more of their
packet next cycle

•  When the channel is idle, there’s no chance of interrupting an
on-going transmission.

•  That leaves the possibility of colliding with another
transmission that starts at the same time – a one slot window
of vulnerability, not 2T-1 slots.

•  Expect collisions to drop dramatically, utilization to be quite
a bit better, although a “wasted” slot is now necessary

•  Busy = detect energy on channel. On wireless channels,
transmitters turn on carrier to transmit (we’ll learn more
about this after break), hence the term “carrier sense”.

6.02 Spring 2011 Lecture 13, Slide #8

Simulation of Carrier Sense

python PS6_4.py –r –n 10 –t 100000 --pmin=.005 --pmax=0.8 –s 10

Utilization = .78, Fairness = .96

6.02 Spring 2011 Lecture 13, Slide #9

Contention Windows

•  Contention Window: parameter is some integer CW

•  When node wants to transmit, it picks a random number r
uniformly in [1,CW] and sends after the rth idle slot from the
current time.

•  If transmission succeeds: CW ← max(CWmin,CW/2)
If transmission collides: CW ← min(CWmax,CW*2)

•  Node is guaranteed to attempt a transmission within CW
slots. With the earlier scheme, there was always the chance
(though exponentially decreasing) that a node may not
transmit within some fixed number of time slots.

6.02 Spring 2011 Lecture 13, Slide #10

Simulation of Contention Windows

python PS6_5.py –r –n 10 –t 100000 –W 256 –s 10

Utilization = .74, Fairness = .92

6.02 Spring 2011 Lecture 13, Slide #11

Summary of MAC Protocols

•  Goal of MAC protocols is to maximize utilization and fairness

•  TDMA is a good choice when nodes are all (or mostly)
backlogged
–  Round-robin sharing provides known communication capacity

and bounded wait

–  It’s precisely fair, 100% utilization if all nodes have packets

–  Poor choice when traffic is bursty or if some nodes have a higher
offered load than others

•  Contention protocols dynamically adapt to changing traffic
–  Distributed protocol (each node makes its own decisions based

on transmission experience) avoids cost of centralized controller
having to know which nodes have packets to send

–  Parameter (p, CW) that controls when packets are sent is
adjusted so that prob(sending packet) is lowered when collisions
are detected and raised when transmissions are successful.

6.02 Spring 2011 Lecture 13, Slide #12

Summary (cont’d.)

•  Slotted Aloha – based on very simple rule: transmit with
probability p.
–  Dynamic adjustment of p “stabilizes” the protocol.

•  Use binary exponential backoff to adjust p downward

–  Utilization maximized when p = 1/(number of backlogged nodes)

–  For large numbers of backlogged nodes U ! 1/e ! 37%

–  For fairness: pmin " p " pmax

•  Unslotted Aloha – packets take multiple time slots to send,
models transmissions at arbitrary times
–  Gets half of the max utilization of slotted Aloha due to doubled

window of vulnerability to collisions

–  Carrier sense avoids collisions from packets once transmission
has started → much better utilization

–  Fairness still requires bounds on p

6.02 Spring 2011 Lecture 13, Slide #13

Code Division Multiple Access (CDMA)

•  Two vectors are orthogonal if their dot products are 0. Here’s
a set of 4 mutually orthogonal vectors:
–  V1: (1, 1, 1, 1)

V2: (1, 1, -1, -1)
V3: (1, -1, 1, -1)
V4: (1, -1, -1, 1)

•  Assign each transmitter a particular orthogonal vector (Vi) it
will use to encode its transmissions (called the “chip code”).
With vectors shown above we can support 4 transmitters.
–  If message bit is 0, transmit –Vi

–  If message bit is 1, transmit Vi

•  Channel will sum the transmitted values:
–  send 00 using V1: -1 -1 -1 -1 -1 -1 -1 -1

send 01 using V2: -1 -1 1 1 1 1 -1 -1
send 11 using V3: 1 -1 1 -1 1 -1 1 -1
send 10 using V4: 1 -1 -1 1 -1 1 1 -1
channel: 0 -4 0 0 0 0 0 -4

1 message bit ! len(Vi) “chips”

6.02 Spring 2011 Lecture 13, Slide #14

CDMA Receiver

•  At receiver take groups of len(V) bits and form dot product
with Vi for desired channel.
–  If result is negative, message bit is 0
–  If result is positive, message bit is 1

channel: 0 -4 0 0 0 0 0 -4

receive using V1: 1 1 1 1 1 1 1 1
dot product: -4 -4
message bits: 0 0

receive using V2: 1 1 -1 -1 1 1 -1 -1
dot product: -4 4
message bits: 0 1

receive using V4: 1 -1 -1 1 1 -1 -1 1
dot product: 4 -4
message bits: 1 0

6.02 Spring 2011 Lecture 13, Slide #15

Asynchronous CDMA

•  Use N orthogonal vectors to multiplex N transmitters (e.g.,
use a NxN Walsh/Hadamard Matrix)

•  Scheme described above works for synchronous CDMA when
all symbols are transmitted starting at same moment. For
example this works fine for a cell tower transmitting to mobile
phones.

•  But hard to synchronize mobile phone transmissions, so use
asynchronous CDMA:
–  Can’t create transmissions that are truly orthogonal if they start

at different times

–  Approximate orthogonality with longer uncorrelated pseudo-
random sequences (called pseudo-noise or PN). “pseudo”
implies that sequence can be reconstructed at receiver given a
known starting point.

–  Assuming equal signal strengths from each transmitter at
receiver, if we decode bits using a particular PN sequence
synchronized with desired transmitter, we’ll get desired signal
plus some uncorrelated noise from other transmitters.

