DIGITAL

1f (freq. domain)

COMMUNICATION

il [)

ARTAW WA

SYSTEMS

T A ITA TR

6.02 Spring 2011
Lecture #13

» unslotted Aloha
* carrier sense, contention windows
* code division glimpse

Unslotted Aloha

¢ Packets take T time slots to transmit

— As slots get smaller and T grows, approximates transmission at
arbitrary times.

* Collisions are no longer “perfect”
— Any overlap between multi-slot packets is a collision
— Larger window of vulnerability to other transmissions

okay okay

\
§
\
\
\
§
\
\

T—1 slots T slots
Any other packet transmitted in these 2T-1
time slots will collide with target packet

Slotted Aloha Summary

¢ Assumptions
— Time is divided into slots
— Transmissions begin on slot boundaries
— Packets are 1 slot long
* Choose to transmit packet with probability p
— Each node uses collisions/success to adjust p
— Adjust p between p,,;, (avoid starvation) and p,,,, (avoid capture)
— On collision p < max(p,,,,p/2), on success p < Min(p,,,..2*p)
» Utilization = throughput achieved /maximum data rate

— U= prob(exactly one transmission in a slot)
= N*p*(1-p)'!, where N is number of backlogged nodes

— Maximized when p = 1/N, U, = (I - 1/N}N!

— AsN—w, U,,— 1/e=37%

— While each node’s p is never exactly 1/N, the goal is to have its
average value over modest intervals be approximately 1/N.

Utilization in Unslotted Aloha

Probability of no transmission for 2T—1 slots:
2T-1
(1-p)

Probability of a sender experiencing no collisions:

N-1

2[p(=p)" =)] = pa-

L = for nodes that try to send new packet while busy with last one!

Utilization = throughput/maximum rate:

Np (1 3 p)(ZT—l)N—l

=
unslotted Aloha
1T

U

_ TNp (1 _ p)(2T—1)N—1

U__. for Unslotted Aloha

maXx

Maximization with respect to p:

log(...) = const +log(p) + [(2T -1)N - l]log(l -p)
Derivative:
1+M, which equals 0 at p = L
p 1-p (ZT - l)N
Plugging back into U:

(27-1)N-1
Umax = T 1_ 1
27-1{ (2T-1)N

For large N: U = (L)l
e

Forlarge N, T: U__ = 1
2T -1 2e

max

Half the utilization of slotted Aloha; ﬂ/

makes sense: twice the window of vulnerability

Carrier Sense

Reduce collisions with on-going transmissions by
transmitting only if channel appears not to be busy.

For large T (slots/packet) if channel is busy this cycle, the
same sender will probably be transmitting more of their
packet next cycle

When the channel is idle, there’s no chance of interrupting an
on-going transmission.

That leaves the possibility of colliding with another
transmission that starts at the same time — a one slot window
of vulnerability, not 2T-1 slots.

Expect collisions to drop dramatically, utilization to be quite
a bit better, although a “wasted” slot is now necessary

Busy = detect energy on channel. On wireless channels,
transmitters turn on carrier to transmit (we’ll learn more
about this after break), hence the term “carrier sense”.

successful receptions

Simulation of Unslotted Aloha

collision)
@
|
o
i
3
o
o
g
U
Y
°
U
i
]
o
1]
!
i
0
i
o
°
s
0
o
o

ed=
]
o
o
i
]
o
3
o
o
o
o
]
o
H
8
U
8
H
i
o
8
(]
i
!
o

IS

OG0 00 OED OWDO O® gHCO © 00 OCOANCD GDILD CUID €D OCOODIO 0 © @0 GDED 0 000 ED ° o oww ® o o0 o
DI ETOCCTEINIIODC O O TINCDCICITE G ORI GO GO oD ECTITEDTO OEIEIDIETD 0

success; red:

Sergeeeat e

N

200 Sme 290 cumemmmose o 0o someo @00 wemo G com®n 0w Wd W 0O cOWOH meowo GO
---——-

Node (blue
o

N
&
Sq

= = N
o 17 153
=] o 5}

successful receptions

I
<}

T

Node #

o

Utilization = .21, Fairness = .99
python PS6_3.py -r -n 10 -t 100000 --pmin=.005 --pmax=0.8 -s 10

Simulation of Carrier Sense

20000 40000 60000 80000 100000

)

collision)

IS

success; red

N

Node (blue:
)

=
o
15}
S

°
-
N
w
IS
)
~
)
©

5
Node #

Utilization = .78, Fairness = .96
python PS6_4.py -r -n 10 -t 100000 --pmin=.005 --pmax=0.8 -s 10

Contention Windows

Contention Window: parameter is some integer CW

When node wants to transmit, it picks a random number r
uniformly in [1,CW] and sends after the r* idle slot from the
current time.

If transmission succeeds: CW < max(CW,,,,CW/2)

If transmission collides: CW «— min(CW,,,,,CW*2)

Node is guaranteed to attempt a transmission within CW
slots. With the earlier scheme, there was always the chance
(though exponentially decreasing) that a node may not
transmit within some fixed number of time slots.

Summary of MAC Protocols

Goal of MAC protocols is to maximize utilization and fairness
TDMA is a good choice when nodes are all (or mostly)
backlogged
— Round-robin sharing provides known communication capacity
and bounded wait
— It’s precisely fair, 100% utilization if all nodes have packets
— Poor choice when traffic is bursty or if some nodes have a higher
offered load than others
Contention protocols dynamically adapt to changing traffic
— Distributed protocol (each node makes its own decisions based

on transmission experience) avoids cost of centralized controller
having to know which nodes have packets to send

— Parameter (p, CW) that controls when packets are sent is
adjusted so that prob(sending packet) is lowered when collisions
are detected and raised when transmissions are successful.

successful receptions

Simulation of Contention Windows

®

collision)

o

=success; red
IS

Node (blue
S

-
o
o
S

Utilization = .74, Fairness = .92
python PS6_5.py -r -n 10 -t 100000 -W 256 -s 10

Summary (cont’d.)

* Slotted Aloha — based on very simple rule: transmit with
probability p.
— Dynamic adjustment of p “stabilizes” the protocol.
* Use binary exponential backoff to adjust p downward
Utilization maximized when p = 1/(number of backlogged nodes)

For large numbers of backlogged nodes U = 1/e = 37%
— For fairness: p;, < P < Pmax
* Unslotted Aloha - packets take multiple time slots to send,
models transmissions at arbitrary times

— Gets half of the max utilization of slotted Aloha due to doubled
window of vulnerability to collisions

— Carrier sense avoids collisions from packets once transmission
has started — much better utilization

— Fairness still requires bounds on p

Code Division Multiple Access (CDMA) CDMA Receiver

Two vectors are orthogonal if their dot products are 0. Here's * At receiver take groups of len(V) bits and form dot product
a set of 4 mutually orthogonal vectors: with Vi for desired channel.
- Vvl: (1, 1, 1, 1) — If result is negative, message bit is O

V2: (l, lr _11

-1) — If result is positive, message bit is 1
v3: (1, -1, 1, -1)
1)

va: (L, =1L, =L, channel: 0-4 0 0 0 0 0-4

Assign each transmitter a particular orthogonal vector (Vi) it
will use to encode its transmissions (called the “chip code”). receive using V1: 1 1 1 1 1 1 1 1
With vectors shown above we can support 4 transmitters. dot product: -4 -4
message bits: 0 0

— If message bit is 0, transmit —Vi
1 message bit — len(Vi) “chips”

— If message bit is 1, transmit Vi receive using v2: 1 1 -1 -1 1 1 -1 -1

Channel will sum the transmitted values: dot product: -4 4
— send 00 using Vv1: -1 -1 -1 -1 -1 -1 -1 -1 message bits: 0 1
send 01 using Vv2: -1 -1 1 1 1 1 -1 -1
send 11 using Vv3: 1 -1 1 -1 1 -1 1 -1 receive using v4: 1 -1 -1 1 1 -1 -1 1
send 10 using Vv4: 1 -1 -1 1 -1 1 1 -1 dot product: 4 -4
channel: 0-4 0 0O O O 0 -4 message bits: 1 0

Asynchronous CDMA

Use N orthogonal vectors to multiplex N transmitters (e.g.,
use a NxN Walsh/Hadamard Matrix)

Scheme described above works for synchronous CDMA when
all symbols are transmitted starting at same moment. For
example this works fine for a cell tower transmitting to mobile
phones.

But hard to synchronize mobile phone transmissions, so use
asynchronous CDMA:

— Can’t create transmissions that are truly orthogonal if they start
at different times

— Approximate orthogonality with longer uncorrelated pseudo-
random sequences (called pseudo-noise or PN). “pseudo”
implies that sequence can be reconstructed at receiver given a
known starting point.

— Assuming equal signal strengths from each transmitter at
receiver, if we decode bits using a particular PN sequence
synchronized with desired transmitter, we’'ll get desired signal
plus some uncorrelated noise from other transmitters.

