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•  unslotted Aloha 
•  carrier sense, contention windows 
•  code division glimpse 
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Slotted Aloha Summary 

•  Assumptions 
–  Time is divided into slots 
–  Transmissions begin on slot boundaries 

–  Packets are 1 slot long 

•  Choose to transmit packet with probability p 
–  Each node uses collisions/success to adjust p 

–  Adjust p between pmin (avoid starvation) and pmax (avoid capture) 

–  On collision p ← max(pmin,p/2), on success p ← min(pmax,2*p) 

•  Utilization = throughput achieved/maximum data rate 
–  U = prob(exactly one transmission in a slot) 

   = N*p*(1-p)N-1, where N is number of backlogged nodes 
–  Maximized when p = 1/N, Umax = (1 – 1/N)N-1 

–  As N → !, Umax→ 1/e ! 37% 

–  While each node’s p is never exactly 1/N, the goal is to have its 
average value over modest intervals be approximately 1/N. 
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Unslotted Aloha 

•  Packets take T time slots to transmit 
–  As slots get smaller and T grows, approximates transmission at 

arbitrary times. 

•  Collisions are no longer “perfect” 
–  Any overlap between multi-slot packets is a collision 

–  Larger window of vulnerability to other transmissions 

okay okay 

packet 

T slots T－1 slots 

Any other packet transmitted in these 2T－1 
time slots will collide with target packet 
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Utilization in Unslotted Aloha 

Probability of no transmission for 2T－1 slots: 

1! p( )2T!1

Utilization = throughput/maximum rate: 
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= for nodes that try to send new packet while busy with last one! 
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Umax for Unslotted Aloha 

Maximization with respect to p: 

log …( ) = const + log(p)+ 2T !1( )N !1"# $%log(1! p)

Derivative: 
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Half the utilization of slotted Aloha; 
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Simulation of Unslotted Aloha 

python PS6_3.py –r –n 10 –t 100000 --pmin=.005 --pmax=0.8 –s 10 

Utilization = .21, Fairness = .99 
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Carrier Sense 

•  Reduce collisions with on-going transmissions by 
transmitting only if channel appears not to be busy. 

•  For large T (slots/packet) if channel is busy this cycle, the 
same sender will probably be transmitting more of their 
packet next cycle 

•  When the channel is idle, there’s no chance of interrupting an 
on-going transmission. 

•  That leaves the possibility of colliding with another 
transmission that starts at the same time – a one slot window 
of vulnerability, not 2T-1 slots. 

•  Expect collisions to drop dramatically, utilization to be quite 
a bit better, although a “wasted” slot is now necessary 

•  Busy = detect energy on channel.  On wireless channels, 
transmitters turn on carrier to transmit (we’ll learn more 
about this after break), hence the term “carrier sense”. 
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Simulation of Carrier Sense 

python PS6_4.py –r –n 10 –t 100000 --pmin=.005 --pmax=0.8 –s 10 

Utilization = .78, Fairness = .96 
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Contention Windows 

•  Contention Window: parameter is some integer CW 

•  When node wants to transmit, it picks a random number r 
uniformly in [1,CW] and sends after the rth idle slot from the 
current time. 

•  If transmission succeeds: CW ← max(CWmin,CW/2) 
If transmission collides: CW ← min(CWmax,CW*2) 

•  Node is guaranteed to attempt a transmission within CW 
slots.  With the earlier scheme, there was always the chance 
(though exponentially decreasing) that a node may not 
transmit within some fixed number of time slots. 
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Simulation of Contention Windows 

python PS6_5.py –r –n 10 –t 100000 –W 256 –s 10 

Utilization = .74, Fairness = .92 
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Summary of MAC Protocols 

•  Goal of MAC protocols is to maximize utilization and fairness 

•  TDMA is a good choice when nodes are all (or mostly) 
backlogged 
–  Round-robin sharing provides known communication capacity 

and bounded wait 

–  It’s precisely fair, 100% utilization if all nodes have packets 

–  Poor choice when traffic is bursty or if some nodes have a higher 
offered load than others 

•  Contention protocols dynamically adapt to changing traffic 
–  Distributed protocol (each node makes its own decisions based 

on transmission experience) avoids cost of centralized controller 
having to know which nodes have packets to send 

–  Parameter (p, CW) that controls when packets are sent is 
adjusted so that prob(sending packet) is lowered when collisions 
are detected and raised when transmissions are successful. 
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Summary (cont’d.) 

•  Slotted Aloha – based on very simple rule: transmit with 
probability p. 
–  Dynamic adjustment of p “stabilizes” the protocol.   

•  Use binary exponential backoff to adjust p downward 

–  Utilization maximized when p = 1/(number of backlogged nodes) 

–  For large numbers of backlogged nodes U ! 1/e ! 37% 

–  For fairness: pmin " p " pmax 

•  Unslotted Aloha – packets take multiple time slots to send, 
models transmissions at arbitrary times 
–  Gets half of the max utilization of slotted Aloha due to doubled 

window of vulnerability to collisions 

–  Carrier sense avoids collisions from packets once transmission 
has started → much better utilization 

–  Fairness still requires bounds on p 
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Code Division Multiple Access (CDMA) 

•  Two vectors are orthogonal if their dot products are 0.  Here’s 
a set of 4 mutually orthogonal vectors: 
–  V1: (1,  1,  1,  1) 

V2: (1,  1, -1, -1) 
V3: (1, -1,  1, -1) 
V4: (1, -1, -1,  1) 

•  Assign each transmitter a particular orthogonal vector (Vi) it 
will use to encode its transmissions (called the “chip code”).  
With vectors shown above we can support 4 transmitters. 
–  If message bit is 0, transmit –Vi 

–  If message bit is 1, transmit Vi 

•  Channel will sum the transmitted values: 
–  send 00 using V1: -1 -1 -1 -1 -1 -1 -1 -1 

send 01 using V2: -1 -1  1  1  1  1 -1 -1 
send 11 using V3:  1 -1  1 -1  1 -1  1 -1 
send 10 using V4:  1 -1 -1  1 -1  1  1 -1 
channel:           0 -4  0  0  0  0  0 -4 

1 message bit ! len(Vi) “chips” 
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CDMA Receiver 

•  At receiver take groups of len(V) bits and form dot product 
with Vi for desired channel. 
–  If result is negative, message bit is 0 
–  If result is positive, message bit is 1 

   
channel:           0 -4  0  0  0  0  0 -4  
 
receive using V1:  1  1  1  1  1  1  1  1 
dot product:               -4          -4 
message bits:               0           0 
 
receive using V2:  1  1 -1 -1  1  1 -1 -1 
dot product:               -4           4 
message bits:               0           1 

 
receive using V4:  1 -1 -1  1  1 -1 -1  1 
dot product:                4          -4 
message bits:               1           0 
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Asynchronous CDMA 

•  Use N orthogonal vectors to multiplex N transmitters (e.g., 
use a NxN Walsh/Hadamard Matrix) 

•  Scheme described above works for synchronous CDMA when 
all symbols are transmitted starting at same moment.  For 
example this works fine for a cell tower transmitting to mobile 
phones. 

•  But hard to synchronize mobile phone transmissions, so use 
asynchronous CDMA: 
–  Can’t create transmissions that are truly orthogonal if they start 

at different times 

–  Approximate orthogonality with longer uncorrelated pseudo-
random sequences (called pseudo-noise or PN).  “pseudo” 
implies that sequence can be reconstructed at receiver given a 
known starting point. 

–  Assuming equal signal strengths from each transmitter at 
receiver, if we decode bits using a particular PN sequence 
synchronized with desired transmitter, we’ll get desired signal 
plus some uncorrelated noise from other transmitters. 


