

INTRODUCTION TO EECS II

DIGITAL COMMUNICATION SYSTEMS

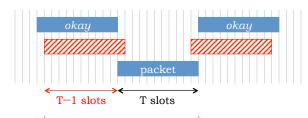
6.02 Spring 2011 Lecture #13

- unslotted Aloha
- carrier sense, contention windows
- code division glimpse

6.02 Spring 2011

Lecture 13, Slide #1

Slotted Aloha Summary


- Assumptions
 - Time is divided into slots
 - Transmissions begin on slot boundaries
 - Packets are 1 slot long
- Choose to transmit packet with probability p
 - Each node uses collisions/success to adjust p
 - Adjust p between p_{min} (avoid starvation) and p_{max} (avoid capture)
 - On collision $p \leftarrow max(p_{min}, p/2)$, on success $p \leftarrow min(p_{max}, 2^*p)$
- Utilization = throughput achieved/maximum data rate
 - U = prob(exactly one transmission in a slot)
 = N*p*(1-p)^{N-1}, where N is number of backlogged nodes
 - Maximized when p = 1/N, $U_{max} = (1 1/N)^{N-1}$
 - As $N \rightarrow \infty$, $U_{max} \rightarrow 1/e \approx 37\%$
 - While each node's p is never exactly 1/N, the goal is to have its average value over modest intervals be approximately 1/N.

6.02 Spring 2011

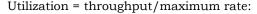
Lecture 13, Slide #2

Unslotted Aloha

- Packets take T time slots to transmit
 - As slots get smaller and T grows, approximates transmission at arbitrary times.
- Collisions are no longer "perfect"
 - Any overlap between multi-slot packets is a collision
 - Larger window of vulnerability to other transmissions

Any other packet transmitted in these 2T-1 time slots will collide with target packet

Utilization in Unslotted Aloha


Probability of no transmission for 2T-1 slots:

 $(1-p)^{2T-1}$

Probability of a sender experiencing no collisions:

$$\geq \left[p \left(1 - p \right)^{2T-2} \right] \left[\left(1 - p \right)^{2T-1} \right]^{N-1} = p (1-p)^{(2T-1)N-1}$$

= for nodes that try to send new packet while busy with last one!

$$U_{\text{unslotted Aloha}} \ge \frac{Np(1-p)^{(2T-1)N-1}}{1/T} = TNp(1-p)^{(2T-1)N-1}$$

6.02 Spring 2011

Lecture 13, Slide #4

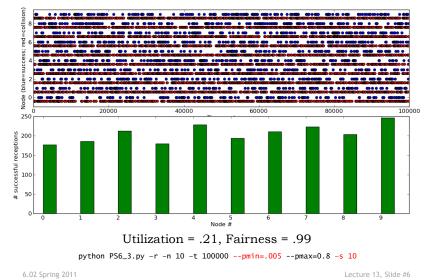
$U_{\rm max}$ for Unslotted Aloha

Maximization with respect to *p*:

$$og(\dots) = \operatorname{const} + \log(p) + \left[(2T - 1)N - 1 \right] \log(1 - p)$$

Derivative:

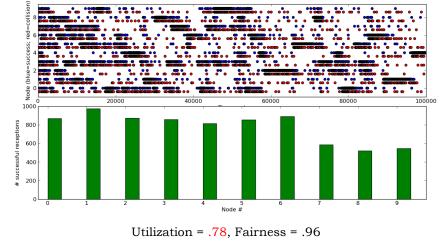
$$\frac{1}{p} + \frac{(2T-1)N-1}{1-p}$$
, which equals 0 at $p = \frac{1}{(2T-1)N}$


Plugging back into U:

$$U_{\max} = \frac{T}{2T - 1} \left(1 - \frac{1}{(2T - 1)N} \right)^{(2T - 1)N - 1}$$

For large N: $U_{\text{max}} \approx \left(\frac{T}{2T-1}\right) \frac{1}{e}$ For large N, T: $U_{\text{max}} \approx \frac{1}{2e}$ Half the utilization of slotted Aloha:

6.02 Spring 2011 makes sense: twice the window of vulnerability Lecture 13, Slide #5


Simulation of Unslotted Aloha

Carrier Sense

- Reduce collisions with on-going transmissions by transmitting only if channel appears not to be busy.
- For large T (slots/packet) if channel is busy this cycle, the same sender will probably be transmitting more of their packet next cycle
- When the channel is idle, there's no chance of interrupting an on-going transmission.
- That leaves the possibility of colliding with another transmission that starts at the same time a one slot window of vulnerability, not 2T-1 slots.
- Expect collisions to drop dramatically, utilization to be quite a bit better, although a "wasted" slot is now necessary
- Busy = detect energy on channel. On wireless channels, transmitters turn on carrier to transmit (we'll learn more about this after break), hence the term "carrier sense".

Simulation of Carrier Sense

python PS6_4.py -r -n 10 -t 100000 --pmin=.005 --pmax=0.8 -s 10

6.02 Spring 2011

Contention Windows

- Contention Window: parameter is some integer CW
- When node wants to transmit, it picks a random number *r* uniformly in [1,*CW*] and sends after the *r*th <u>idle</u> slot from the current time.
- If transmission succeeds: CW ← max(CW_{min}, CW/2) If transmission collides: CW ← min(CW_{max}, CW*2)
- Node is guaranteed to attempt a transmission within CW slots. With the earlier scheme, there was always the chance (though exponentially decreasing) that a node may not transmit within some fixed number of time slots.

Simulation of Contention Windows

python PS6_5.py -r -n 10 -t 100000 -W 256 -s 10

6.02 Spring 2011

Lecture 13, Slide #10

6.02 Spring 2011

Summary of MAC Protocols

- Goal of MAC protocols is to maximize utilization and fairness
- TDMA is a good choice when nodes are all (or mostly) backlogged
 - Round-robin sharing provides known communication capacity and bounded wait
 - It's precisely fair, 100% utilization if all nodes have packets
 - Poor choice when traffic is bursty or if some nodes have a higher offered load than others
- · Contention protocols dynamically adapt to changing traffic
 - Distributed protocol (each node makes its own decisions based on transmission experience) avoids cost of centralized controller having to know which nodes have packets to send
 - Parameter (p, CW) that controls when packets are sent is adjusted so that prob(sending packet) is lowered when collisions are detected and raised when transmissions are successful.

Summary (cont'd.)

- Slotted Aloha based on very simple rule: transmit with probability p.
 - Dynamic adjustment of p "stabilizes" the protocol.Use binary exponential backoff to adjust p downward
 - Utilization maximized when p = 1/(number of backlogged nodes)
 - For large numbers of backlogged nodes $U \approx 1/e \approx 37\%$
 - For fairness: $p_{min} \le p \le p_{max}$
- Unslotted Aloha packets take multiple time slots to send, models transmissions at arbitrary times
 - Gets half of the max utilization of slotted Aloha due to doubled window of vulnerability to collisions
 - Carrier sense avoids collisions from packets once transmission has started \rightarrow much better utilization
 - Fairness still requires bounds on p

Lecture 13, Slide #9

Code Division Multiple Access (CDMA)

- Two vectors are orthogonal if their dot products are 0. Here's a set of 4 mutually orthogonal vectors:
 - V1: (1, 1, 1, 1) V2: (1, 1, -1, -1) V3: (1, -1, 1, -1) V4: (1, -1, -1, 1)
- Assign each transmitter a particular orthogonal vector (Vi) it will use to encode its transmissions (called the "chip code"). With vectors shown above we can support 4 transmitters.
 - If message bit is 0, transmit -ViIf message bit is 1, transmit Vi
- \rightarrow 1 message bit \rightarrow len(Vi) "chips"
- Channel will sum the transmitted values:

send	00	using	V1:	-1	-1	-1	-1	-1	-1	-1	-1
send	01	using	V2:	-1	-1	1	1	1	1	-1	-1
send	11	using	V3:	1	-1	1	-1	1	-1	1	-1
send	10	using	V4:	1	-1	-1	1	-1	1	1	-1
chanr	nel:	:		0	-4	0	0	0	0	0	-4

6.02 Spring 2011

Lecture 13, Slide #13

CDMA Receiver

- At receiver take groups of len(V) bits and form dot product with Vi for desired channel.
 - If result is negative, message bit is 0
 - If result is positive, message bit is 1

channel:	0	-4	0	0	0	0	0	-4
receive using V1: dot product: message bits:	1	1	1	1 -4 0	1	1		1 -4 0
receive using V2: dot product: message bits:	1	1	-1	-1 -4 0	1	1	-1	-1 4 1
receive using V4: dot product: message bits:	1	-1	-1	1 4 1	1	-1	-1	1 -4 0

6.02 Spring 2011

Lecture 13, Slide #14

Asynchronous CDMA

- Use N orthogonal vectors to multiplex N transmitters (e.g., use a NxN Walsh/Hadamard Matrix)
- Scheme described above works for synchronous CDMA when all symbols are transmitted starting at same moment. For example this works fine for a cell tower transmitting to mobile phones.
- But hard to synchronize mobile phone transmissions, so use asynchronous CDMA:
 - Can't create transmissions that are truly orthogonal if they start at different times
 - Approximate orthogonality with longer uncorrelated pseudorandom sequences (called pseudo-noise or PN). "pseudo" implies that sequence can be reconstructed at receiver given a known starting point.
 - Assuming equal signal strengths from each transmitter at receiver, if we decode bits using a particular PN sequence synchronized with desired transmitter, we'll get desired signal plus some uncorrelated noise from other transmitters.