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DIGITAL
COMMUNICATION
SYSTEMS

6.02 Spring 2011
Lecture #14

* complex exponentials

* discrete-time Fourier series
* spectral coefficients

* band-limited signals

Sinusoids and LTI Systems
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Frequency division multiplexing depends on an interesting
property of LTI channels:

if the channel input x[n] is a sinusoid of a given amplitude,
frequency and phase, the response will be a sinusoid at the
same frequency, although the amplitude and phase may be
altered. As we'll see, the change in amplitude and phase
may depend on the frequency of the input.

The same property holds when the inputs are complex
exponentials, which are closely related to sines and cosines
(and, perhaps surprisingly, are much easier to analyze!).

Frequency Division Multiplexing

To engineer the sharing of a channel through frequency division
multiplexing we’ll need a new set tools that will let us
understand the behavior of signals and systems in the
frequency domain. Plan:

— This week

* Analyze the frequency content of signals using the discrete-
time Fourier series

* Determine what happens when we band-limit a signal
* Characterize LTI systems by their frequency response

* Introduce filters: LTI systems that eliminate a region of
frequencies from a signal

— Next week

» Using modulation to position band-limited signals in
different regions of the frequency spectrum

* Receiving a particular signal from a shared spectrum

Periodic Sequences

cos(0%n) =1
A sequence x[n] is said to be periodic
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with a period of N samples (“periodic 8 A L ]

with period N”) if o 1 2z 3 4

ras(l%}n)
x[n]=x[n+N]
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A sequence that is periodic with period

N is also periodic with period 2N, 3N,

..., and so on.
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A sinusoidal sequence that is periodic o 1 3 3 4
with period N can only have one of a

finite number of frequencies: all the
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harmonics of the fundamental - —_
frequency 217/N radians/sample, i.e., cos(4%n)
frequencies of the form k-(211/N) for R .
some integer k. 68t Y




Frequencies k:(2m/N) when k 2 N Negative Frequencies

5171(4_11 sln( l_n)

Frequency k-(211/N) yields the same sequence as (k mod N)-(217/N)
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99 = 9.9 // ‘\ \\ V/ \] . .
=23 - L o S LSRR A ST ] 0 and 21, are identical to sequences of frequency
4 5 3 4 .
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-TT L i k’s in th —(N
"\ Highest frequency: range -TT and T, corresponding to k’s in the range —(N/2) to

Unique sequences: k=0, 1, 2, ..., N-1 (N-1):(2m/N) < 2™ (N/2).

Complex Exponentials Sine and Cosine and el¢
A complex exponential is a complex-valued function of a
single argument — an angle measured in radians. Euler’s _ 1 . _ L o _ L g
formula shows the relation between complex exponentials cos(p) = 2 e iR~ 2 e’ sin(@) 2j ¢ 2j ¢
and our usual trig functions:

Jj® _ . . (@7/N)n o =i(27/N)n @7/ N)n _ o —i(2n/N)n
e’” = cos(p) + jsin(p) e 4 s
eI(D@2r/N)n eI(=1)(2m/N)n




Useful Properties of ei® Discrete-time Fourier Series
When © = 0: If x[n] is periodic with period N, it can be expressed as the sum
® ' of scaled periodic complex exponentials:

Complex exponential with
When @ = £1T: period N and fundamental
frequency 211/N.

M= =1
, . (2w
e = e = (-1 S )
. . x[n]= a.e
Summing samples over one period: < >
k=(N h
# | N k=0,£N,#2N v
E e VN = [ k ranges over any N consecutive The spectral coefficients a, for each of
ne{N) 0 otherwise integers. Two common choices: the discrete frequencies are, in general,
A » k starts at O (O < freq < 21) complex, changing both the amplitude
» k starts at -N/2 (-11 < freq < ) and phase of the associated complex

n ranges over any N consecutive integers,
eg,n=0,1,.., N-1

Solving for the a,

Start with: o E » jk(%[)n

k=(N)
Multiply both sides by ed*@™/Nn and sum over N terms:

E x[n]e_jr(%)n _ E E akejk(%)ne—jr(%)n

n=(N) n=(N) k=(N)

R .
From slide 9:

= a,N / N if k=r, O otherwise

(27
a=c e

N n=<N>

exponential. If X[n] is real, a, = a;.

Discrete-time Fourier Series Pair

s
x[n]= E ae (N) ’ Synthesis equation ‘
k=(N)
(27
a, = i E x[n] e_jk(ﬁ)n ’Analysis equation ‘
N n=<N>

If we have N samples of a periodic waveform of period N, we
can find the waveform’s spectral coefficients using the
analysis equation.

If we have the spectral coefficients, we can reconstruct the
original time-domain waveform using the synthesis equation.



x[n] = cos(r%tn) x[n]= sin(r%rn)

1 2 —jk(z—”)n cos(3(2m/11)n) sin(2(27/11)n)
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ar = - = —_——
1 S(ay,) 2j 2 Nay)
p— k = ir 0.0010 1 k
N2 ol T :
0 otherwise o 2j 2 o
-0.0010 = = 5 3 7) ak = 0 OtheI'WiSG - n =2 o
x[n]=1+2cos(3 27 n)-3sin(5 27 n) Spectrum of Digital Transmissions
1 1 1 1 transmit @ 7 samples/bit
aln] ) T
Again, by inspection: since the cos s = oo gﬁiB (A I
and sin are different frequencies, . I B S Y T K [ Lt oo |
we can analyze them separately. z - J, l ° * 100 0
a, = average value = 1 Ra,) o la |
a,;;=2(1/2)=1 [from cos term] gf: , Eg
0a : o1 PR . [ o
as=-3(/2) =-1.5j [from sin term)] - ; o = MLO -
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N z[n] synthesized from q,
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Effect of Band-limiting a Transmission
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z[n| synthesized from q,

How Low Can We Go?

|a, | cutoff @ +k=15 z[n]
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7 samples/bit — 14 samples/period — k=(N/14)=(196/14)=14



