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« frequency response
* LTI systems with “zeros”
« filters

Complex Exponentials and LTI Systems
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Frequency division multiplexing depends on an interesting
property of LTI channels:

if the channel input x[n] is a complex exponential of a given
amplitude, frequency and phase, the response will be a
complex exponential at the same frequency, although the
amplitude and phase may be altered. As we’ll see, the
change in amplitude and phase will, in general, depend on
the frequency of the input.

Let’s prove this to be true...

From Last Time

k| 27 n
x[n]= E Clkej ( N) ’ Synthesis equation ‘
k=(N)
1 -2 ) : :
a, = N ;V>X[n] e N ’Analys1s equation ‘

xX[n] and a, are both periodic with period N

211 /N radians/sample is the fundamental frequency.
Complex exponentials in Fourier series equations have
frequencies which are some harmonic of 211/N

If x[n] is real, a_, = a,” (i.e., they are complex conjugates)
a, is the average of the x[n]

Frequency Response

Acr yin)

Using the convolution sum we can compute the system’s
response to a complex exponential as input:

Y=Y himlx[n-m]
= ) him]Ae"
=A™ h{m]e "

=x[n]-H(e™)

where we've defined the frequency response of a system as

H(e™) = Eh[m]e’jg’”
A

Reminds us it’s the response for complex exponentials




Another Way to Characterize LTI Systems

L2 L2

x[n]= E ake]kW" —> H(ei®) > yln]l= E akH(e]kW) ¢

k=) k=(N)

The frequency response tells us how the system will affect
each of the spectral coefficients that determine the input. As
you can see from the equation above

L2

b =a H(ejkﬁ)
k= k

are the spectral coefficients for y[n]. The frequency response
completely characterizes an LTI system in the frequency
domain, just as the unit sample response completely
characterizes the system in the time domain.

Example h[n] and H(ei?)
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Unit Sample and Response

d[n] — H(el®) — h[n]

We can compute the (periodic) spectral coefficients for the
(periodic) unit sample:

27, 2T ]

1 - jk 1 -J
a=—§xne N = —x[0]le N =
¢ Nn=<N>[] N[] N

Now use our new formula for the (periodic) system response
from the previous slide:
L 2w L2

h[n]= E LH(ejkW) ej v

/\/ k=(N)

This is the synthesis equation!

Moving Averages
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H(el?) with Zeros
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H(e™) = S hlmle™ = h0le™™ + h[1le™ + h[2]e”

= h[O]+ A[11(e™") + A[2](e™®)*
Hmm. A quadratic equation with two roots at frequency *¢:
H(ejQ) = (e/Q _ ejtp)(ejg _ e—jtp)
- (ejQ )2 _ (eﬂﬂ + e*jtp)(ejQ) +el%e7?
=(e’)* = 2cos(@) () +1

Matching terms in the two equations, we see that an LTI system
would have a frequency response that went to zero at +¢ if
h[0]=1, h[1]=-2cos(¢®p) and h[2] = 1.

Series Interconnection of LTI Systems

wn]

X[n]— H,[n]

H,[n] — YIn]

jkgZE ijﬁfn jkgjzn
wln]= E aHe Y)e V¥ = E be N
k=(N) k=(N')
K e K,
Mnl= Y bH,(e Y)e ¥ =Y aH(e Y)Hy(e e ¥
k=(N) k=(N')

X[n]—s  H,n]H,n] — YO

Frequency response of two LTI systems in series is the term-
by-term product of the individual frequency responses.

How about:

Series Interconnection of LTI Systems

From Lecture 4:

X[n]—s h,[n] h,[n] — y(nl

\ g

X[n]—s  h,[nJ*h,[n] — YIn]

X[n]—sf{ H,[n] H,[n] — y[n]

A Poor Man’s Low-pass Filter

Suppose we wanted a low-pass filter with a cutoff frequency of 11/4?

X[n]— H, ,[n] = H, 0] {Hs, o] 2 Hyn] —Y0O]

H(e™)| |H (™)l |H(e™)]
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Wait! Maybe This Will Work Better...

Suppose we draw the frequency response we want and then use
the equation on slide 6 to compute h[n] from the proposed

H(e?)?

computed hin]
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Example from previous lecture: N=196, cutoff at +k=15.

recompute our h[n] using the larger N:

Updated Filtering Plan

Now that N has grown because of the zero padding, we have to

periodic x[n]
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periodic h[n]
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Non-causal h[n]!

600 800 1000

Dealing With Periodicity Issues

Remembering that everything is periodic with period N, is this
the signal we want to filter?

periodic x[n]

If we really want to see what happens when we filter a
transmission that starts and stops, we want zeros before and

after: o
periodic x[n]
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Computed h[n] for Low-pass Filter

If you'’re hung up on causality (which admittedly is useful for
real-time signal processing), we can make a causal h[n] by
adding an N/2 sample delay.

causal computed h[n] H(™)

google “FIR filter”



Useful Filters The Need for Speed
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i 7§§ “:Jf; Computing these series involves O(N?) operations — when N gets
am—————.—.L . IV ~ = = = 4 large, the computations getvery s 1 o w....
e —r T ol - N el Happily, in 1965 Cooley and Tukey published a fast method for
% \ I oz o L i computing the Fourier transform (aka FFT, IFFT), rediscovering
Bt k;J ] 2 g a technique known to Gauss. This method takes O(N log N)
o _— operations. N = 1000, N2 = 1000000 NlogN ~ 10000
()] and-stop hin:
s f §‘§ .Ih Caveat: scaling is different for the FFT: the spectral coefficients
8 e 8 0 NPt aren’t scaled by 1/N — that scaling happens on the inverse

transform back to the time domain.

Frequency Response of Channels
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