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6.02 Spring 2011 
Lecture #15 

•  frequency response 
•  LTI systems with “zeros” 
•  filters 

6.02 Spring 2011 Lecture 15, Slide #2 

From Last Time 

•  x[n] and ak are both periodic with period N 

•  2π/N radians/sample is the fundamental frequency.  
Complex exponentials in Fourier series equations have 
frequencies which are some harmonic of 2π/N 

•  If x[n] is real, a－k = ak
* (i.e., they are complex conjugates) 

•  a0 is the average of the x[n] 
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Synthesis equation 

Analysis equation 
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Complex Exponentials and LTI Systems 

Frequency division multiplexing depends on an interesting 
property of LTI channels: 
 

if the channel input x[n] is a complex exponential of a given 
amplitude, frequency and phase, the response will be a 
complex exponential at the same frequency, although the 
amplitude and phase may be altered.  As we’ll see, the 
change in amplitude and phase will, in general, depend on 
the frequency of the input. 

 
Let’s prove this to be true… 

h[n] 
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Frequency Response 

Using the convolution sum we can compute the system’s 
response to a complex exponential as input: 

h[n] AejΩn y[n] 

y[n]= h[m]x[n!m]
m
"

= h[m]Ae j#(n!m)
m
"

= Ae j#n h[m]e! j#m
m
"

= x[n]$H (e j#)
where we’ve defined the frequency response of a system as 

H (e j!) " h[m]e# j!m
m
$

Reminds us it’s the response for complex exponentials 
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Another Way to Characterize LTI Systems 

H(ejΩ) x[n]= ake
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The frequency response tells us how the system will affect 
each of the spectral coefficients that determine the input.  As 
you can see from the equation above 

bk =  akH (e
jk2!
N )

are the spectral coefficients for y[n].  The frequency response 
completely characterizes an LTI system in the frequency 
domain, just as the unit sample response completely 
characterizes the system in the time domain. 
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Unit Sample and Response 

H(ejΩ) ![n] h[n]

We can compute the (periodic) spectral coefficients for the 
(periodic) unit sample: 

ak =  1
N

x[n] e
n= N
!

" jk2!
N
n
=  1

N
x[0]e

" jk2!
N

0
=

1
N

Now use our new formula for the (periodic) system response 
from the previous slide: 
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This is the synthesis equation! 
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Example h[n] and H(ej!)  
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Moving Averages 



6.02 Spring 2011 Lecture 15, Slide #9 

H(ej!) with Zeros 

H (e j!) = h[m]e" j!m
m
# = h[0]e" j!0 + h[1]e" j!1 + h[2]e" j!2

= h[0]+ h[1](e" j!)+ h[2](e" j!)2

H (e j!) = (e j! " e j! )(e j! " e" j! )
= (e j!)2 " (e j! + e" j! )(e j!)+ e j!e" j!

= (e j!)2 " 2cos(! )(e j!)+1

Hmm.  A quadratic equation with two roots at frequency ±φ: 

Matching terms in the two equations, we see that an LTI system 
would have a frequency response that went to zero at ±φ if 

 h[0]=1, h[1]=-2cos(φ) and h[2] = 1. 
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Series Interconnection of LTI Systems 

h1[n] x[n] h2[n] y[n] 

h1[n] h2[n] x[n] y[n] 

From Lecture 4: 

H1[n] x[n] H2[n] y[n] 

How about: 

6.02 Spring 2011 Lecture 15, Slide #11 

Series Interconnection of LTI Systems 

H1[n] x[n] H2[n] y[n] 

w[n]= akH1(e
jk2!
N ) e

jk2!
N
n

k= N
! " bke

jk2!
N
n

k= N
!

y[n]= bkH2 (e
jk2!
N ) e

jk2!
N
n

k= N
! = akH1(e

jk2!
N )H2 (e

jk2!
N ) e

jk2!
N
n

k= N
!

w[n] 

H1[n]·H2[n] x[n] y[n] 

Frequency response of two LTI systems in series is the term-
by-term product of the individual frequency responses. 
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A Poor Man’s Low-pass Filter 

Suppose we wanted a low-pass filter with a cutoff frequency of π/4? 

Hπ/4[n] x[n] Hπ/2[n] H3π/4[n] Hπ[n] y[n] 
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Wait! Maybe This Will Work Better… 

Suppose we draw the frequency response we want and then use 
the equation on slide 6 to compute h[n] from the proposed 
H(ejΩ)? 

Example from previous lecture: N=196, cutoff at ±k=15. 
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Dealing With Periodicity Issues 

Remembering that everything is periodic with period N, is this 
the signal we want to filter? 

If we really want to see what happens when we filter a 
transmission that starts and stops, we want zeros before and 
after: 
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Updated Filtering Plan 
Now that N has grown because of the zero padding, we have to 
recompute our h[n] using the larger N: 

Non-causal h[n]! 

+n －n 
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Computed h[n] for Low-pass Filter 

If you’re hung up on causality (which admittedly is useful for 
real-time signal processing), we can make a causal h[n] by 
adding an N/2 sample delay. 

google “FIR filter” 
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Useful Filters 
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The Need for Speed 
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Computing these series involves O(N2) operations – when N gets 
large, the computations get very   s   l   o   w…. 
 
Happily, in 1965 Cooley and Tukey published a fast method for 
computing the Fourier transform (aka FFT, IFFT), rediscovering  
a technique known to Gauss.  This method takes O(N log N) 
operations. 
 
Caveat: scaling is different for the FFT: the spectral coefficients 
aren’t scaled by 1/N – that scaling happens on the inverse 
transform back to the time domain. 

N = 1000,  N2 = 1000000  NlogN ! 10000 
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Frequency Response of Channels 
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