

INTRODUCTION TO EECS II
DIGITAL COMMUNICATION systems

6.02 Spring 2011 Lecture \#16

- sharing the frequency spectrum
- modulation
- demodulation

Using Some Piece of the Spectrum

- You have: a band-limited signal $x[n]$ at baseband (i.e., centered around 0 frequency).
- You want: the same signal, but centered around some specific frequency $\mathrm{k}_{\mathrm{c}}(2 \pi / \mathrm{N})$
- Modulation: convert from baseband up to $\mathrm{k}_{\mathrm{c}}(2 \pi / \mathrm{N})$

Demodulation: convert from $\mathrm{k}_{\mathrm{c}}(2 \pi / \mathrm{N})$ down to baseband $\xrightarrow{\text { modulation }}$ demodulation

Signal centered at k_{c}

Signal centered at 0

$\mathrm{f}_{\mathrm{s},}$ frequency, Ω and k

Various frequency specifications we'll use

- f_{s}, the sample frequency in samples/sec
- f , the signal frequency in $\mathrm{Hz}=$ cycles/sec
- $-\mathrm{f}_{\mathrm{s}} / 2 \leq \mathrm{f} \leq \mathrm{f}_{\mathrm{s}} / 2$
- Ω, the angular frequency in radians/sample - $-\pi \leq \Omega \leq \pi$
- k , the spectral coefficient index
- $-\mathrm{N} / 2 \leq \mathrm{k} \leq \mathrm{N} / 2$

$$
\Omega=2 \pi \frac{f}{f_{s}}=2 \pi \frac{k_{\Omega}}{N}
$$

Examples: $\mathrm{f}_{\mathrm{s}}=1 \mathrm{e} 6$ samples/sec, $\mathrm{f}=10 \mathrm{kHz}, \mathrm{N}=1000$ so $\Omega=.02 \pi$ and $k_{\Omega}=10$

$$
\mathrm{k}=15, \mathrm{~N}=100, \mathrm{f}_{\mathrm{s}}=1 \mathrm{e} 6
$$

$$
\text { so } \Omega=.3 \pi \text { and } \mathrm{f}=150 \mathrm{kHz}
$$

Modulation

For band-limited signal a_{k} are nonzero only for small range of $\pm \mathrm{k}$

$$
\begin{aligned}
y[n] & =\left[\sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j k \frac{2 \pi}{N} n}\right]\left[\frac{1}{2} e^{j k_{c} \frac{2 \pi}{N} n}+\frac{1}{2} e^{-j k_{c} \frac{2 \pi}{N} n}\right] \\
& =\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j\left(k+k_{c}\right) \frac{2 \pi}{N} n}+\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j\left(k-k_{c}\right) \frac{2 \pi}{N} n}
\end{aligned}
$$

Example: Modulation (time)

Demodulation

$$
z[n]=y[n]\left[\frac{1}{2} e^{j k_{c} \frac{2 \pi}{N} n}+\frac{1}{2} e^{-j k_{c} \frac{2 \pi}{N} n}\right]
$$

$$
=\left[\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j\left(k+k_{c}\right) \frac{2 \pi}{N} n}+\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j\left(k-k_{c} \frac{2 \pi}{N} n\right.}\right]\left[\frac{1}{2} e^{j k_{c} \frac{2 \pi}{N} n}+\frac{1}{2} e^{-j k_{c} \frac{2 \pi}{N} n}\right]
$$

$$
=\frac{1}{4} \sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j\left(k+2 k_{c}\right) \frac{2 \pi}{N} n}+\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j k \frac{2 \pi}{N} n}+\frac{1}{4} \sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j\left(k-2 k_{c}\right) \frac{2 \pi}{N} n}
$$

Example: Modulation (freq)

Band-limited $x[n] \quad \cos [35(2 \pi / N) n]$

$\mathrm{y}[\mathrm{n}]$

Demodulation Frequency Diagram

$z[n]$

Demodulation Frequency Diagram

Example: Demodulation (freq)

_ecture 16, Slide \#11

Example: Demodulation (time)

Showing idealized signals

Demodulation with $\sin \left[\mathrm{k}_{\mathrm{c}}(2 \pi / \mathbf{N}) \mathrm{n}\right]$

Hmm. So $z[n]$ no longer has the signal we want at baseband!

$$
\begin{aligned}
z[n] & =y[n]\left[-\frac{j}{2} e^{j k_{c} \frac{2 \pi}{N} n}+\frac{j}{2} e^{-j k_{c} \frac{2 \pi}{N} n}\right] \\
& =\left[\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j\left(k+k_{c}\right) \frac{2 \pi}{N} n}+\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j\left(k-k_{c}\right) \frac{2 \pi}{N} n}\right]\left[-\frac{j}{2} e^{j k_{c} \frac{2 \pi}{N} n}+\frac{j}{2} e^{-j k_{c} \frac{2 \pi}{N} n}\right] \\
& =-\frac{j}{4} \sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j\left(k+2 k_{c}\right) \frac{2 \pi}{N} n}+\frac{j}{4} \sum_{k=-k_{x}}^{k_{x}} a_{k} e^{j\left(k-2 k_{c}\right) \frac{2 \pi}{N} n}
\end{aligned}
$$

6.02 Spring 2011

Oops, no baseband signal! Lecture 16, Slide \#13

Demodulation (sin) Frequency Diagram

Demodulation (sin) Frequency Diagram

$z[n]$

Lecture 16, Slide \#14
$z[n]$

