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6.02 Spring 2011 

Lecture #19 

•  addressing, forwarding, routing 
•  liveness, advertisements, integration 
•  distance-vector routing 
•  routing loops, counting to infinity 
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The Problem: Finding Paths 

•  Addressing (how to name nodes?) 
–  Unique identifier for global addressing 
–  Link name for neighbors 

•  Forwarding (how does a switch process a packet?) 

•  Routing (building and updating data structures to ensure 
that forwarding works) 

•  Functions of the network layer 
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Forwarding 

•  Core function is conceptually simple 
–  lookup(dst_addr) in routing table returns route (i.e., outgoing 

link) for packet 
–  enqueue(packet, link_queue) 
–  send(packet) along outgoing link 

•  And do some bookkeeping before enqueue 
–  Decrement hop limit (TTL); if 0, discard packet 
–  Recalculate checksum (in IP, header checksum) 

Switch 
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Shortest Path Routing 

•  Each node wants to find the path with minimum total cost 
to other nodes 
–  We use the term “shortest path” even though we’re interested 

in min cost (and not min #hops)  

•  Several possible distributed approaches 
–  Vector protocols, esp. distance vector (DV) 
–  Link-state protocols (LS) 
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(Assume all costs ! 0) 
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Routing Table Structure 

Destination Link (next-hop) Cost 

A L1 18 

B ‘Self’ 0 

C L1 11 

D L2 4 

E L1 16 

ROUTE 

Table @ node B 
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Distributed Routing: A Common Plan 

•  Determining live neighbors 
–  Common to both DV and LS protocols 
–  HELLO protocol (periodic)  

•  Send HELLO packet to each neighbor to let them know who’s at the 
end of their outgoing links 

•  Use received HELLO packets to build a list of neighbors containing 
an information tuple for each link: (timestamp, neighbor addr, link) 

•  Repeat periodically.  Don’t hear anything for a while → link is down, 
so remove from neighbor list. 

•  Advertisement step (periodic) 
–  Send some information to all neighbors 

–  Used to determine connectivity & costs to reachable nodes 

•  Integration step 
–  Compute routing table using info from advertisements 

–  Dealing with stale data 
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Distance-Vector Routing  

•  DV advertisement 
–  Send info from routing table entries: (dest, cost) 
–  Initially just (self,0) 

•  DV integration step [Bellman-Ford] 
–  For each (dest,cost) entry in neighbor’s advertisement 

•  Account for cost to reach neighbor: (dest,my_cost) 

•  my_cost = cost_in_advertisement + link_cost 

–  Are we currently sending packets for dest to this neighbor? 
•  See if link matches what we have in routing table 

•  If so, update cost in routing table to be my_cost 

–  Otherwise, is my_cost smaller than existing route? 
•  If so, neighbor is offering a better deal!  Use it… 

•  update routing table so that packets for dest are sent to this 
neighbor 
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DV Example: round 1 
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{‘B’: (None,0)}! {‘D’: (None,0)}!

{‘E’: (None,0)}!{‘C’: (None,0)}!

{‘A’: (None,0)}!

Node A: update routes to BB, CC 
Node B: update routes to AA, CC, DD 
Node C: update routes to AA, BB, DD, EE 
Node D: update routes to BB, CC, EE 
Node E: update routes to CC, DD 
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Subscript indicates node that gave 
better route 
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DV Example: round 2 
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{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4)!
}!

{‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19),!
 ‘C’: (L1,7)!
}!

Node A: update routes to BC, DC, EC 
Node B: update routes to AC, EC 
Node C: no updates 
Node D: update routes to AC 
Node E: update routes to AC, BC 
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DV Example: round 3 
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{‘A’: (L1,18),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4),!
 ‘E’: (L1,16)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

Node A: no updates 
Node B: no updates 
Node C: no updates 
Node D: no updates 
Node E: no updates 
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DV Example: Break a Link 
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{‘A’: (L1,18),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4),!
 ‘E’: (L1,16)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

When link breaks: eliminate routes 
that use that link. 
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DV Example: round 4 
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{‘A’: (None,∞),!
 ‘B’: (None,0),!
 ‘C’: (None,∞),!
 ‘D’: (L2,4),!
 ‘E’: (None,∞)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (None,∞),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

L0 

L1 

L0 

L1 

L2 

L2 

L3 

L1 

L0 

L0 

L1 L2 

L1 
L0 

! 

Node A: update cost to BC 
Node B: update routes to AA, CD, ED 
Node C: update routes to BD 
Node D: no updates 
Node E: update routes to BD 
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DV Example: round 5 
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{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L2,19),!
 ‘D’: (L2,4),!
 ‘E’: (L2,17)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L1,17),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L2,19),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1, ∞),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!
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Node A: update route to BB 
Node B: no updates 
Node C: no updates 
Node D: no updates 
Node E: no updates 

Update cost 
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DV Example: final state 
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{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L2,19),!
 ‘D’: (L2,4),!
 ‘E’: (L2,17)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L1,17),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L2,19),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!
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Node A: no updates 
Node B: no updates 
Node C: no updates 
Node D: no updates 
Node E: no updates 
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Correctness & Performance 

•  Optimal substructure property fundamental to correctness of 
both Bellman-Ford and Dijkstra’s shortest path algorithms 
–  Suppose shortest path from X to Y goes through Z.  

Then, the sub-path from X to Z must be a shortest 
path. 

•  Proof of Bellman-Ford via induction on number of 
walks on shortest (min-cost) paths 
–  Easy when all costs > 0 and synchronous model (see notes) 
–  Harder with distributed async model (not in 6.02) 

•  How long does it take for distance-vector routing 
protocol to converge? 
–  Time proportional to largest number of hops 

considering all the min-cost paths 
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Partitioning the Network 
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{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (None,∞),!
 ‘D’: (None,∞),!
 ‘E’: (None,∞)!
}!

{‘A’: (L1,22),!
 ‘B’: (None,∞),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L1,17),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (None,∞),!
 ‘B’: (L2,19),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19),!
 ‘C’: (None,∞),!
 ‘D’: (None,∞),!
 ‘E’: (None,∞)!
}!
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Node A: delete routes to C, D, E 
Node B: delete routes to C, D, E 
Node C: update routes to AE, BE 
Node D: update routes to AE, BE 
Node E: update route to AD, cost to BD 

! 

! 
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DV Example: round 6 
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{‘A’: (L0,19),!
 ‘B’: (None,0)!
}!

{‘A’: (L2,25),!
 ‘B’: (L2,30),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L1,35),!
 ‘B’: (None,∞),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L3,17),!
 ‘B’: (L3,22),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19)!
}!
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! 
Node A: no updates 
Node B: no updates 
Node C: update costs to AE, BE 
Node D: update route to AC, cost to BE 
Node E: update routes to AC, BC 
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Counting to Infinity 

Nodes C, D, and E each 
update their costs in 
response to earlier updates 
by neighbors.  Costs spiral 
upwards towards "! 

remove route when cost 
reaches self.INFINITY 
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{‘A’: (L0,19),!
 ‘B’: (None,0)!
}!

{‘A’: (L2,38),!
 ‘B’: (None,∞),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,22),!
 ‘B’: (L0,27),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L3,40),!
 ‘B’: (None,∞),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19)!
}!
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Routing Loop! 

Suppose E sends a packet 
to A: 

•  E forwards to C 
•  C forwards to E 

•  … repeat … 

•  Drop packet when TTL 
is decremented to 0 
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{‘A’: (L0,19),!
 ‘B’: (None,0)!
}!

{‘A’: (L2,38),!
 ‘B’: (None,∞),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,22),!
 ‘B’: (L0,27),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L3,40),!
 ‘B’: (None,∞),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19)!
}!
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Eventual Final State 

Eventually all the 
unreachable nodes are 
removed from routing table 
and all routing loops are 
resolved. 
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{‘A’: (L0,19),!
 ‘B’: (None,0)!
}!

{‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19)!
}!
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