
6.02 Spring 2011 Lecture 19, Slide #1

6.02 Spring 2011

Lecture #19

•  addressing, forwarding, routing
•  liveness, advertisements, integration
•  distance-vector routing
•  routing loops, counting to infinity

6.02 Spring 2011 Lecture 19, Slide #2

The Problem: Finding Paths

•  Addressing (how to name nodes?)
–  Unique identifier for global addressing
–  Link name for neighbors

•  Forwarding (how does a switch process a packet?)

•  Routing (building and updating data structures to ensure
that forwarding works)

•  Functions of the network layer

B

C

D

E

A

L2

L1

L0

11 13 15

19

7

4

Link costs

5

6.02 Spring 2011 Lecture 19, Slide #3

Forwarding

•  Core function is conceptually simple
–  lookup(dst_addr) in routing table returns route (i.e., outgoing

link) for packet
–  enqueue(packet, link_queue)
–  send(packet) along outgoing link

•  And do some bookkeeping before enqueue
–  Decrement hop limit (TTL); if 0, discard packet
–  Recalculate checksum (in IP, header checksum)

Switch

6.02 Spring 2011 Lecture 19, Slide #4

B

C

D

E

A

4

11

5

13

Shortest Path Routing

•  Each node wants to find the path with minimum total cost
to other nodes
–  We use the term “shortest path” even though we’re interested

in min cost (and not min #hops)

•  Several possible distributed approaches
–  Vector protocols, esp. distance vector (DV)
–  Link-state protocols (LS)

15

19

7
(Assume all costs ! 0)

6.02 Spring 2011 Lecture 19, Slide #5

Routing Table Structure

Destination Link (next-hop) Cost

A L1 18

B ‘Self’ 0

C L1 11

D L2 4

E L1 16

ROUTE

Table @ node B

B

C

D

E

A

4

11

5

13 15

19

7

L2

L1

L0

6.02 Spring 2011 Lecture 19, Slide #6

Distributed Routing: A Common Plan

•  Determining live neighbors
–  Common to both DV and LS protocols
–  HELLO protocol (periodic)

•  Send HELLO packet to each neighbor to let them know who’s at the
end of their outgoing links

•  Use received HELLO packets to build a list of neighbors containing
an information tuple for each link: (timestamp, neighbor addr, link)

•  Repeat periodically. Don’t hear anything for a while → link is down,
so remove from neighbor list.

•  Advertisement step (periodic)
–  Send some information to all neighbors

–  Used to determine connectivity & costs to reachable nodes

•  Integration step
–  Compute routing table using info from advertisements

–  Dealing with stale data

6.02 Spring 2011 Lecture 19, Slide #7

Distance-Vector Routing

•  DV advertisement
–  Send info from routing table entries: (dest, cost)
–  Initially just (self,0)

•  DV integration step [Bellman-Ford]
–  For each (dest,cost) entry in neighbor’s advertisement

•  Account for cost to reach neighbor: (dest,my_cost)

•  my_cost = cost_in_advertisement + link_cost

–  Are we currently sending packets for dest to this neighbor?
•  See if link matches what we have in routing table

•  If so, update cost in routing table to be my_cost

–  Otherwise, is my_cost smaller than existing route?
•  If so, neighbor is offering a better deal! Use it…

•  update routing table so that packets for dest are sent to this
neighbor

6.02 Spring 2011 Lecture 19, Slide #8

DV Example: round 1

B

C

D

E

A

4

11

5

13 15

19

7

{‘B’: (None,0)}! {‘D’: (None,0)}!

{‘E’: (None,0)}!{‘C’: (None,0)}!

{‘A’: (None,0)}!

Node A: update routes to BB, CC
Node B: update routes to AA, CC, DD
Node C: update routes to AA, BB, DD, EE
Node D: update routes to BB, CC, EE
Node E: update routes to CC, DD

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

Subscript indicates node that gave
better route

6.02 Spring 2011 Lecture 19, Slide #9

DV Example: round 2

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4)!
}!

{‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19),!
 ‘C’: (L1,7)!
}!

Node A: update routes to BC, DC, EC
Node B: update routes to AC, EC
Node C: no updates
Node D: update routes to AC
Node E: update routes to AC, BC

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

6.02 Spring 2011 Lecture 19, Slide #10

DV Example: round 3

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L1,18),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4),!
 ‘E’: (L1,16)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

Node A: no updates
Node B: no updates
Node C: no updates
Node D: no updates
Node E: no updates

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

6.02 Spring 2011 Lecture 19, Slide #11

DV Example: Break a Link

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L1,18),!
 ‘B’: (None,0),!
 ‘C’: (L1,11),!
 ‘D’: (L2,4),!
 ‘E’: (L1,16)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L1,11),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

When link breaks: eliminate routes
that use that link.

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

!

6.02 Spring 2011 Lecture 19, Slide #12

DV Example: round 4

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (None,∞),!
 ‘B’: (None,0),!
 ‘C’: (None,∞),!
 ‘D’: (L2,4),!
 ‘E’: (None,∞)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L0,16),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (None,∞),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1,18),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

!

Node A: update cost to BC
Node B: update routes to AA, CD, ED
Node C: update routes to BD
Node D: no updates
Node E: update routes to BD

6.02 Spring 2011 Lecture 19, Slide #13

DV Example: round 5

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L2,19),!
 ‘D’: (L2,4),!
 ‘E’: (L2,17)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L1,17),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L2,19),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L1, ∞),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

!

Node A: update route to BB
Node B: no updates
Node C: no updates
Node D: no updates
Node E: no updates

Update cost

6.02 Spring 2011 Lecture 19, Slide #14

DV Example: final state

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (L2,19),!
 ‘D’: (L2,4),!
 ‘E’: (L2,17)!
}!

{‘A’: (L1,22),!
 ‘B’: (L0,4),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L1,17),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L0,7),!
 ‘B’: (L2,19),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19),!
 ‘C’: (L1,7),!
 ‘D’: (L1,22),!
 ‘E’: (L1,12)!
}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

!

Node A: no updates
Node B: no updates
Node C: no updates
Node D: no updates
Node E: no updates

6.02 Spring 2011 Lecture 19, Slide #15

Correctness & Performance

•  Optimal substructure property fundamental to correctness of
both Bellman-Ford and Dijkstra’s shortest path algorithms
–  Suppose shortest path from X to Y goes through Z.

Then, the sub-path from X to Z must be a shortest
path.

•  Proof of Bellman-Ford via induction on number of
walks on shortest (min-cost) paths
–  Easy when all costs > 0 and synchronous model (see notes)
–  Harder with distributed async model (not in 6.02)

•  How long does it take for distance-vector routing
protocol to converge?
–  Time proportional to largest number of hops

considering all the min-cost paths

6.02 Spring 2011 Lecture 19, Slide #16

Partitioning the Network

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L0,19),!
 ‘B’: (None,0),!
 ‘C’: (None,∞),!
 ‘D’: (None,∞),!
 ‘E’: (None,∞)!
}!

{‘A’: (L1,22),!
 ‘B’: (None,∞),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,12),!
 ‘B’: (L1,17),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (None,∞),!
 ‘B’: (L2,19),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19),!
 ‘C’: (None,∞),!
 ‘D’: (None,∞),!
 ‘E’: (None,∞)!
}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

!

Node A: delete routes to C, D, E
Node B: delete routes to C, D, E
Node C: update routes to AE, BE
Node D: update routes to AE, BE
Node E: update route to AD, cost to BD

!

!

6.02 Spring 2011 Lecture 19, Slide #17

DV Example: round 6

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L0,19),!
 ‘B’: (None,0)!
}!

{‘A’: (L2,25),!
 ‘B’: (L2,30),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L1,35),!
 ‘B’: (None,∞),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L3,17),!
 ‘B’: (L3,22),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19)!
}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

!
!

!
Node A: no updates
Node B: no updates
Node C: update costs to AE, BE
Node D: update route to AC, cost to BE
Node E: update routes to AC, BC

6.02 Spring 2011 Lecture 19, Slide #18

Counting to Infinity

Nodes C, D, and E each
update their costs in
response to earlier updates
by neighbors. Costs spiral
upwards towards "!

remove route when cost
reaches self.INFINITY

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L0,19),!
 ‘B’: (None,0)!
}!

{‘A’: (L2,38),!
 ‘B’: (None,∞),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,22),!
 ‘B’: (L0,27),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L3,40),!
 ‘B’: (None,∞),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19)!
}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

!
!

!

6.02 Spring 2011 Lecture 19, Slide #19

Routing Loop!

Suppose E sends a packet
to A:

•  E forwards to C
•  C forwards to E

•  … repeat …

•  Drop packet when TTL
is decremented to 0

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L0,19),!
 ‘B’: (None,0)!
}!

{‘A’: (L2,38),!
 ‘B’: (None,∞),!
 ‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘A’: (L0,22),!
 ‘B’: (L0,27),!
 ‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘A’: (L3,40),!
 ‘B’: (None,∞),!
 ‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19)!
}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

!
!

!

6.02 Spring 2011 Lecture 19, Slide #20

Eventual Final State

Eventually all the
unreachable nodes are
removed from routing table
and all routing loops are
resolved.

B

C

D

E

A

4

11

5

13 15

19

7

{‘A’: (L0,19),!
 ‘B’: (None,0)!
}!

{‘C’: (L1,15),!
 ‘D’: (None,0),!
 ‘E’: (L2,13)!
}!

{‘C’: (L0,5),!
 ‘D’: (L1,13),!
 ‘E’: (None,0)!
}!

{‘C’: (None,0),!
 ‘D’: (L2,15),!
 ‘E’: (L3,5)!
}!

{‘A’: (None,0),!
 ‘B’: (L0,19)!
}!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

!
!

!

