The Problem: Finding Paths

L2 4

DIGITAL

f (freq. domain)
il [)
AN L[V
A A VA AV K

COMMUNICATION
SYSTEMS

Link costs

6.02 Spring 2011

* Addressing (how to name nodes?)

LeCtu re #1 9 — Unique identifier for global addressing
— Link name for neighbors
* addressing, forwarding, routing + Forwarding (how does a switch process a packet?)

* liveness, advertisements, integration
* distance-vector routing
* routing loops, counting to infinity

* Routing (building and updating data structures to ensure
that forwarding works)

* Functions of the network layer

Forwarding Shortest Path Routing

0
[T ExT)
version | header

Tl type of | 16-62 total Iengih (i bytes)
service (TOS)

Switch

e
1661 identiication somaber | 360 | 13-61 Gagment offeel
fags

&%t time to live | 8-t protocol | 16-bit header checksum
(TTL)

TT 0 source IP address

3751 destimation 1P address

13

‘aptions G any)

- il

Figure 1: P beader datagram

(Assume all costs = 0)

* Core function is conceptually simple

— Tlookup(dst_addr) in routing table returns route (i.e., outgoing
link) for packet

Each node wants to find the path with minimum total cost

— enqueue(packet, Tink_queue) to other nodes

- send(packet) along outgoing link — We use the term “shortest path” even though we’re interested
* And do some bookkeeping before enqueue in min cost (and not min #hops)

— Decrement hop limit (TTL); if O, discard packet » Several possible distributed approaches

— Recalculate checksum (in IP, header checksum) — Vector protocols, esp. distance vector (DV)
— Link-state protocols (LS)

Routing Table Structure Distributed Routing: A Common Plan

* Determining live neighbors
— Common to both DV and LS protocols
— HELLO protocol (periodic)

* Send HELLO packet to each neighbor to let them know who’s at the
end of their outgoing links
* Use received HELLO packets to build a list of neighbors containing
an information tuple for each link: (timestamp, neighbor addr, link)
* Repeat periodically. Don’t hear anything for a while — link is down,
so remove from neighbor list.
Table @ node B

* Advertisement step (periodic)

Destination — Send some information to all neighbors

18 — Used to determine connectivity & costs to reachable nodes
* Integration step
B ‘Self’ 0 . L .
— Compute routing table using info from advertisements

c L1 11 — Dealing with stale data
D L2 4
E L1 16

Distance-Vector Routing DV Example: round 1

* DV advertisement
— Send info from routing table entries: (dest, cost)
— Initially just (self,0)
+ DV integration step [Bellman-Ford]
— For each (dest,cost) entry in neighbor’s advertisement
* Account for cost to reach neighbor: (dest,my_cost)
* my_cost = cost_in_advertisement + link_cost
— Are we currently sending packets for dest to this neighbor?
+ See if link matches what we have in routing table
« If so, update cost in routing table to be my_cost
— Otherwise, is my_cost smaller than existing route?
« If so, neighbor is offering a better deal! Use it... {’C’: (None,0)} {‘E’: (None,0)}

. . Node A: update routes to Bg, C¢
« update routing table so that packets for dest are sent to this Node B: update routes to A,, Ce, Dp
neighbor Node C: update routes to A,, Bg, Dy, EE\J\ o
Node D: update routes to Bg, C¢, Eg Subscript indicates node that gave
Node E: update routes to C¢, Dp, better route

{‘B’: (None,0)} {‘D’: (None,0)}

{'A’: (None,0)}

DV Example: round 2

{‘A":
‘B':
‘C':
‘D':

}

19
LO

{'A’: (None,0),

‘B’: (L0,19), LI
‘C’": (L1,7)

}
(A
Node A: update routes to B, D¢, E¢ ‘B':
Node B: update routes to A¢, E¢ ‘C':
Node C: no updates ‘D':
Node D: update routes to A ‘E':
Node E: update routes to A¢, B¢ }

(L0,19), {'B":

(None, 0), ‘C’:

(L1,11), ‘D’z

(L2,4) ‘E':
}

LO 4 LO

(LO,7), {'C":
(L1,11), ‘D’:
(None, 0), ‘E’:

(L2,15), }
(L3,5)

DV Example: Break a Link

4UATe (L1,18)y {‘A’:

‘B’: (None,0), ‘B
Loy (T iers
‘D'z (L2,4), ‘D’
— P —— ‘EY:
} }

4 LO

{'A’: (None,0),
‘B’: (L1,18), LI
‘C': (L1,7),
‘D': (L1,22),
‘E': (L1,12)

} {'A": (L0,7), {'A’:
—Bf: (L1,11),— ‘B':
When link breaks: eliminate routes ‘C’: (None,0), ‘C':
that use that link. ‘D’: (L2,15), ‘D’:
‘E’: (L3,5) ‘B

} }

(LO,4),
(L1,15),
(None, 0),
(L2,13)

(L0,5),
(L1,13),
(None, 0)

(L1,22),
(LO,4),
(L1,15),
(None, 0),
(L2,13)

(LO,12),
(LO,16),
(LO,5),
(L1,13),
(None, 0)

Node A:
Node B:
Node C:
Node D:
Node E:

Node A:
Node B:
Node C:
Node D:
Node E:

DV Example: round 3

{‘A’: (L1,18),
‘B’: (None,0),
‘C’': (L1,11),
‘D': (L2,4),
‘E': (L1,16)

{'A’: (None,0),
‘B’: (L1,18),
‘C': (L1,7),
‘D': (L1,22),
‘E’: (L1,12)

} {*A": (LO,7), {'A":
no updates ‘B’: (L1,11), ‘B':
no updates ‘C': (None,0), ‘C:
no updates ‘D’: (L2,15), ‘D'z
no updates ‘E': (L3,5) ‘E':
no updates } }

DV Example: round 4

{'A’: (None,®), {‘A":
‘B’: (None,0),
‘C’: (None,x),
‘D': (L2,4),
‘E’': (None,x)

{'A’: (None,0),
‘B’: (L1,18), LI
‘C': (L1,7),
‘D': (L1,22),
‘E': (L1,12)

} {*A": (LO,7), {'A":
update cost to B¢ ‘B’: (None,®), ‘B':
update routes to A,, Cp, Ep ‘C’: (None,0), ‘C’:
update routes to By ‘D': (L2,15), ‘D':
no updates ‘E': (L3,5) ‘E':

update routes to By } }

4t

{‘A":
‘B':
‘C’:
‘D'z
‘E’:

‘B':
‘C’:
‘D'z
‘E’:

LO

(L1,22),
(L0,4),
(L1,15),
(None, 0),
(L2,13)

(LO,12),
(L0,16),
(L0,5),
(L1,13),
(None, 0)

(L1,22),
(LO,4),
(L1,15),
(None, 0),
(L2,13)

(L0,12),
(L0,16),
(L0,5),
(L1,13),
(None, 0)

Update cost

DV Example: round 5

{‘A": (L0,19), {'A’: (L1,22),
‘B’: (None,0), ‘B’': (LO,4),
‘cr: (L2,19), ‘cr: (L1,15),
‘D'z (L2,4), ‘D’: (None,0),
‘E': (L2,17) ‘E': (L2,13)

(None, 0),
(Lll (X’),
‘cr: (L1,7),
‘D': (L1,22),
‘E': (L1,12)
} {*A": (LO,7), {'A’: (LO,12),
Node A: update route to By ‘B': (L2,19), ‘B': (L1,17),
Node B: no updates ‘C': (None,0), ‘C’: (LO,5),
Node C: no updates ‘D': (L2,15), ‘D': (L1,13),
Node D: no updates ‘E': (L3,5) ‘E': (None,0)
Node E: no updates } }

Correctness & Performance

Optimal substructure property fundamental to correctness of

both Bellman-Ford and Dijkstra’s shortest path algorithms

— Suppose shortest path from X to Y goes through Z.
Then, the sub-path from X to Z must be a shortest

path.

Proof of Bellman-Ford via induction on number of

walks on shortest (min-cost) paths

— Easy when all costs > 0 and synchronous model (see notes)

— Harder with distributed async model (not in 6.02)

How long does it take for distance-vector routing
protocol to converge?

— Time proportional to largest number of hops
considering all the min-cost paths

Node A:
Node B:
Node C:
Node D:
Node E:

Node A:
Node B:
Node C:
Node D:
Node E:

DV Example: final state
Ca
‘C':
‘D’z
‘E’:

{‘A":
‘B':
‘C':
‘D’z
‘E’:

}

no updates
no updates
no updates
no updates
no updates

(None, 0),
(L0,19),
(L1,7),
(L1,22),
(L1,12)

{'A":
‘B':
‘C':
‘D'z
‘E’:

(L0,19), {‘A":

(None, 0), ‘B’:
(L2,19), ‘C’s
(L2,4), ‘D’:
(L2,17) ‘E’:

}
4 LO

(L0,7), {‘a":

(L2,19), ‘B':

(None, 0), ‘C':

(L2,15), ‘D’:

(L3,5) ‘E’:
}

Partitioning the Network

{‘A":
‘B':
‘C':
‘D’z
‘E’:

}

(None, 0),
(L0,19),
(None, ®),
(None,),
(None,)

delete routes to C, D, E
delete routes to C, D, E
update routes to Ag, By
update routes to Ag, By
update route to Ap, cost to By}

L1

{'A":
‘B':
‘C':
‘D'z
‘E’:

}
19

LO

{'A":
‘B’:
‘C':
‘D'z
‘E’:

(LO0,19), {‘A":

(None, 0), ‘B’:

(None,®), ‘C':

(None,), ‘D'

(None, ») ‘E':
LO 4 ’

(None,»), {‘A":
(L2,19), ‘B’
(None, 0), ‘C':
(L2,15), ‘D’:
(L3,5) ‘E’:

}

(L1,22),
(LO,4),
(L1,15),
(None, 0),
(L2,13)

(L0,12),
(L1,17),
(L0,5),
(L1,13),
(None, 0)

(L1,22),
(None, »),
(L1,15),
(None, 0),
(L2,13)

(L0,12),
(L1,17),
(L0,5),
(L1,13),
(None, 0)

DV Example: round 6

{

{‘a": (L0,19),
‘B’: (None,0)

{'A’: (None,0),
‘B': (L0,19) LT
}
{*A': (L3,17), {
Node A: no updates ‘B': (L3,22),
Node B: no updates ‘C': (None,0),
Node C: update costs to Ag, B ‘D’: (L2,15),
Node D: update route to A, cost to By ‘E': (L3,5)
Node E: update routes to Ac, B¢ } }
Routing Loop!
{
{’A": (LO,19),
‘B’: (None,0)

{'A’: (None,0),
‘B': (L0,19)
}
Suppose E sends a packet
to A:
{‘A": (L3,40), {
¢ E forwards to C ‘B’: (None,),
e C forwards to E ‘C’: (None,0),
‘D’: (L2,15),
e ... repeat ... ‘E': (L3,5)
* Drop packet when TTL } }

is decremented to O

‘A
‘B':
‘C’:
‘D'z
‘E’:

‘A’z
‘B':
‘C’:
‘D'z
‘E’:

‘A’z
‘B':
‘C’:
‘D'z
‘E’:

‘A’z
‘B':
‘C’:
‘D'z
‘E’:

(L2,25),
(L2,30),
(L1,15),
(None, 0),
(L2,13)

(L1,35),
(None, »),
(L0,5),
(L1,13),
(None, 0)

(L2,38),
(None,),
(L1,15),
(None, 0),
(L2,13)

(L0,22),
(L0,27),
(L0,5),
(L1,13),
(None, 0)

Counting to Infinity

{'A": (L2,38),
‘B': (None,x),
‘C’: (L1,15),
‘D’: (None,0),
‘E’: (L2,13)

{‘a": (L0,19),
‘B’: (None,0)

{'A’: (None,0),
‘B’: (LO,19) LI
}

Nodes C, D, and E each

update their costs in C'A7: (L3,40), AT: (10,22),

response to earlier updates ‘B’: (None,®), ‘B': (L0,27),
by neighbors. Costs spiral ‘C’: (None,0), ‘c’: (LO,5),
upwards towards oo! ‘D’z (L2,15), ‘D’z (L1,13),
‘E’: (L3,5) ‘E’: (None,O0)

remove route when cost } }

reaches self.INFINITY

Eventual Final State

{‘C’: (L1,15),
{‘Aa": (LO,19), ‘D': (None,0),
‘B’: (None,O0) ‘E’: (L2,13)

{'A’: (None,0),
‘B’: (LO,19) LI

Eventually all the . .

‘C’: (None,0), ‘C': (LO,5),
unreachable nodes. are D' (12,15), ‘Dr: (L1.13),
removed from routing table ‘E': (L3,5) ‘E": (None,0)
and all routing loops are } }
resolved.

