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6.02 Spring 2011 
Lecture #20 

•  path-vector routing 
•  link-vector routing 
•  Dijkstra’s shortest path algorithm 
•  hierarchical routing  

6.02 Spring 2011 Lecture 20, Slide #2 

Distance-vector (DV) review 

Nodes add link cost to 
neighbor’s routing costs 
and keep their routing 
table up-to-date with 
shortest-path route. 
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At each ADVERT interval, 
nodes tell neighbors 
(dest,cost) for all routes in 
their routing table.  

A:(L0,19)@1!

A:(L0,7)@1!

A:(L1,18)@2!
A:(L1,22)@2!

A:(L0,12)@2!
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  Link is Down at Time 4? 

Routes using a down link 
are changed to have cost 
!, which will propagate to 
neighbors who then 
update their cost if they 
used you for their route. 
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A link is considered down 
if no advertisements arrive 
over the link; check every 
ADVERT interval, act after 
some small number… 

A:(None,∞)@4!

A:(L0,7)@1!

A:(L1,22)@2!

A:(L0,12)@2!

" 

A:(L0,19)@5!
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Paritioned Network at Time 10 

Routes using a down link 
are changed to have cost 
!, which will propagate to 
neighbors who then 
update their cost if they 
used you for their route. 
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An unfortunate 
combination of down links 
might partition the 
network. 

A:(None,∞)@4!

A:(None,∞)@10!

A:(L1,22)@2!

A:(L0,12)@2!

" 

A:(L0,19)@5!

" 

" 
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Count to Infinity 

For example, C hears from 
E about a route to A with 
total cost 17.  Since only 
costs are kept, C can’t tell 
that E was relying on it for 
its route of cost 12! 
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Now the Bellman-Ford 
update algorithm will 
cause new costs to be 
calculated for the dead 
routes. 

A:(None,∞)@10!

A:(L1,22)@2!

A:(L0,12)@2!

" 

A:(L0,19)@5!

" 

" 
A:(L3,17)@11! A:(L1,35)@11 !

A:(L2,25)@11 !

A:(L3,40)@12! A:(L0,22)@12!

A:(L2,48)@12!

The costs spiral higher, eventually 
passing some bound, at which 
point they are recognized as !. 
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Fixing “Count to Infinity” 

•  Problem 
–  Node C’s route to A breaks, C sets cost to ! 
–  But at next round of advertisements, hears of lower-cost routes 

from neighbors, not know the neighbor’s routes used C itself to 
get to A. 

•  Solution 
–  In addition to reporting costs in advertisements, also report 

routing path as discovered incrementally by Bellman-Ford 

–  Called “path-vector” 

–  Modify Bellman-Ford update with new rule: nodes should ignore 
advertised routes that contain itself in the routing path 

–  Pros: count-to-infinity “problem” is solved (routing tables 
eliminate routes to unreachable nodes more quickly) 

–  Cons: advertisement overhead is larger 
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Path-vector (PV) routing 

Nodes add link cost to 
neighbor’s routing costs 
and keep their routing 
table up-to-date with 
shortest-path route. 
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At each ADVERT interval, 
nodes tell neighbors 
(path,cost) for all routes in 
their routing table.  

A:(L0,[A],19)@1!

A:(L0,[A],7)@1!

A:(L1,[C,A],18)@2!
A:(L1,[C,A],22)@2!

A:(L0,[C,A],5)@2!
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Paritioned Network at Time 10: PV 

Using PV, C won’t accept 
routes to A from either D or E 
since C appears on the path 
they advertise.  Unreachable 
nodes are quickly removed 
from tables. 

B 

C 

D 

E 

A 

4 

11 

5 

13 15 

19 

7 

A:(None,[],0)!

L0 

L1 

L0 

L1 

L2 

L2 

L3 

L1 

L0 

L0 

L1 L2 

L1 
L0 

Nodes connected to down 
links change their costs to 
!. 

A:(None,[],∞)@10!

A:(L1,[C,A],22)@2!

A:(L0,[C,A],12)@2!

" 

A:(None,[],∞)@10!

" 

" 
A:(None,[],∞)@11!

A:(None,[],∞)@11!A:(L0,[A],19)@11!

Pros: simple, works well for small networks 
Cons: only works for small networks 
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Link-State Routing 

•  Advertisement step 
–  Send information about its links to its neighbors (aka link 

state advertisement or LSA): 
 
    [seq#, [(nbhr1, linkcost1), (nbhr2, linkcost2), …] 
 

–  Do it periodically (liveness, recover from lost LSAs) 
•  Integration 

–  If seq# in incoming LSA > seq# in saved LSA for source node:  
    update LSA for node with new seq#, neighbor list 
    rebroadcast LSA to neighbors (→ flooding) 

–  Remove saved LSAs if seq# is too far out-of-date 
–  Result: Each node discovers current map of the network 

•  Build routing table 
–  Periodically each node runs the same shortest path algorithm 

over its map 
–  If each node implements computation correctly and each 

node has the same map, then routing tables will be correct 
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LSA Flooding 
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•  LSA travels each link in each direction 
–  Don’t bother with figuring out which link LSA came from 

•  Termination: each node rebroadcasts LSA exactly once 

•  All reachable nodes eventually hear every LSA 
–  Time required: number of links to cross network 
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Dijkstra’s Shortest Path Algorithm 

•  Initially 
–  nodeset = [all nodes] = set of nodes we haven’t processed 
–  spcost = {me:0, all other nodes: !}  # shortest path cost 

–  routes = {me:--, all other nodes: ?}  # routing table 

•  while nodeset isn’t empty: 
–  find u, the node in nodeset with smallest spcost 

–  remove u from nodeset 

–  for v in [u’s neighbors]: 
•  d = spcost(u) + cost(u,v)    # distance to v via u 

•  if d < spcost(v):                 # we found a shorter path! 

–  spcost[v] = d 

–  routes[v] = routes[u] (or if u == me, enter link from me to v) 

•  Complexity: N = number of nodes, L = number of links 
–  Finding u (N times): linear search=O(N), using heapq=O(log N) 

–  Updating spcost: O(L) since each link appears twice in neighbors 
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Dijkstra Example 
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Step u Nodeset 
spcost route 

A B C D E A B C D E 

0 [A,B,C,D,E] 0 ! ! ! ! -- ? ? ? ? 

1 A [B,C,D,E] 0 19 7 ! ! -- L0 L1 ? ? 

2 C [B,D,E] 0 18 7 22 12 -- L1 L1 L1 L1 

3 E [B,D] 0 18 7 22 12 -- L1 L1 L1 L1 

4 B [D] 0 18 7 22 12 -- L1 L1 L1 L1 

5 D [] 0 18 7 22 12 -- L1 L1 L1 L1 

Finding shortest paths from A: 

LSAs: 
  A: [(B,19), (C, 7)] 
  B: [(A,19), (C,11), (D, 4)] 
  C: [(A, 7), (B,11), (D,15), (E, 5)] 
  D: [(B, 4), (C,15), (E,13)] 
  E: [(C, 5), (D,13)] 
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Why is Network Routing Hard? 

•  Inherently distributed problem 
–  Information about links and neighbors is local to each node, 

but we want global reach 
 

•  Efficiency: want reasonably good paths, and must find 
them without huge overhead 
 

•  Handling failures and “churn” 
–  Must tolerate link, switch, and network faults 
–  Failures and recovery could be arbitrarily timed, messages 

could be lost, etc. 
 

•  Scaling to large size very hard (later courses) 
–  And on the Internet, many independent, competing 

organizations must cooperate 
–  Mobility makes the problem harder 
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Hierarchical Routing 

domain-1 

domain-2 

domain-3 

Interior router 

  Border router 

•  Internet:  collection of domains/networks 
•  Inside a domain: Route over a graph of routers 
•  Between domains: Route over a graph of domains 
•  Address: concatenation of “Domain Id”, “Node Id” 
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Pros and Cons 

Advantages   
•  Scalable 

–  Smaller tables 
–  Smaller messages 

•  Delegation 
–  Each domain can run its 

own routing protocol 
 

Disadvantages 
•  Mobility is difficult 

–  Address depends on geographic location 
•  Sup-optimal paths 

–  E.g., in the figure, the shortest path between the two machines 
should traverse the yellow domain. But hierarchical routing goes 
directly between the green and blue domains, then finds the local 
destination → path traverses more routers. 
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Summary 

•  The network layer implements the “glue” that achieves 
connectivity 
–  Does addressing, forwarding, and routing 

•  Forwarding entails a routing table lookup; the table is 
built using routing protocol 

•  DV protocol: distributes route computation; each node 
advertises its best routes to neighbors 

•  LS protocol: distributes (floods) neighbor information; 
centralizes route computation using shortest-path 
algorithm 


