
6.02 Spring 2011 Lecture 20, Slide #1

6.02 Spring 2011
Lecture #20

•  path-vector routing
•  link-vector routing
•  Dijkstra’s shortest path algorithm
•  hierarchical routing

6.02 Spring 2011 Lecture 20, Slide #2

Distance-vector (DV) review

Nodes add link cost to
neighbor’s routing costs
and keep their routing
table up-to-date with
shortest-path route.

B

C

D

E

A

4

11

5

13 15

19

7

A:(None,0)!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

At each ADVERT interval,
nodes tell neighbors
(dest,cost) for all routes in
their routing table.

A:(L0,19)@1!

A:(L0,7)@1!

A:(L1,18)@2!
A:(L1,22)@2!

A:(L0,12)@2!

6.02 Spring 2011 Lecture 20, Slide #3

 Link is Down at Time 4?

Routes using a down link
are changed to have cost
!, which will propagate to
neighbors who then
update their cost if they
used you for their route.

B

C

D

E

A

4

11

5

13 15

19

7

A:(None,0)!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

A link is considered down
if no advertisements arrive
over the link; check every
ADVERT interval, act after
some small number…

A:(None,∞)@4!

A:(L0,7)@1!

A:(L1,22)@2!

A:(L0,12)@2!

"

A:(L0,19)@5!

6.02 Spring 2011 Lecture 20, Slide #4

Paritioned Network at Time 10

Routes using a down link
are changed to have cost
!, which will propagate to
neighbors who then
update their cost if they
used you for their route.

B

C

D

E

A

4

11

5

13 15

19

7

A:(None,0)!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

An unfortunate
combination of down links
might partition the
network.

A:(None,∞)@4!

A:(None,∞)@10!

A:(L1,22)@2!

A:(L0,12)@2!

"

A:(L0,19)@5!

"

"

6.02 Spring 2011 Lecture 20, Slide #5

Count to Infinity

For example, C hears from
E about a route to A with
total cost 17. Since only
costs are kept, C can’t tell
that E was relying on it for
its route of cost 12!

B

C

D

E

A

4

11

5

13 15

19

7

A:(None,0)!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

Now the Bellman-Ford
update algorithm will
cause new costs to be
calculated for the dead
routes.

A:(None,∞)@10!

A:(L1,22)@2!

A:(L0,12)@2!

"

A:(L0,19)@5!

"

"
A:(L3,17)@11! A:(L1,35)@11 !

A:(L2,25)@11 !

A:(L3,40)@12! A:(L0,22)@12!

A:(L2,48)@12!

The costs spiral higher, eventually
passing some bound, at which
point they are recognized as !.

6.02 Spring 2011 Lecture 20, Slide #6

Fixing “Count to Infinity”

•  Problem
–  Node C’s route to A breaks, C sets cost to !
–  But at next round of advertisements, hears of lower-cost routes

from neighbors, not know the neighbor’s routes used C itself to
get to A.

•  Solution
–  In addition to reporting costs in advertisements, also report

routing path as discovered incrementally by Bellman-Ford

–  Called “path-vector”

–  Modify Bellman-Ford update with new rule: nodes should ignore
advertised routes that contain itself in the routing path

–  Pros: count-to-infinity “problem” is solved (routing tables
eliminate routes to unreachable nodes more quickly)

–  Cons: advertisement overhead is larger

6.02 Spring 2011 Lecture 20, Slide #7

Path-vector (PV) routing

Nodes add link cost to
neighbor’s routing costs
and keep their routing
table up-to-date with
shortest-path route.

B

C

D

E

A

4

11

5

13 15

19

7

A:(None,[],0)!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

At each ADVERT interval,
nodes tell neighbors
(path,cost) for all routes in
their routing table.

A:(L0,[A],19)@1!

A:(L0,[A],7)@1!

A:(L1,[C,A],18)@2!
A:(L1,[C,A],22)@2!

A:(L0,[C,A],5)@2!

6.02 Spring 2011 Lecture 20, Slide #8

Paritioned Network at Time 10: PV

Using PV, C won’t accept
routes to A from either D or E
since C appears on the path
they advertise. Unreachable
nodes are quickly removed
from tables.

B

C

D

E

A

4

11

5

13 15

19

7

A:(None,[],0)!

L0

L1

L0

L1

L2

L2

L3

L1

L0

L0

L1 L2

L1
L0

Nodes connected to down
links change their costs to
!.

A:(None,[],∞)@10!

A:(L1,[C,A],22)@2!

A:(L0,[C,A],12)@2!

"

A:(None,[],∞)@10!

"

"
A:(None,[],∞)@11!

A:(None,[],∞)@11!A:(L0,[A],19)@11!

Pros: simple, works well for small networks
Cons: only works for small networks

6.02 Spring 2011 Lecture 20, Slide #9

Link-State Routing

•  Advertisement step
–  Send information about its links to its neighbors (aka link

state advertisement or LSA):

 [seq#, [(nbhr1, linkcost1), (nbhr2, linkcost2), …]

–  Do it periodically (liveness, recover from lost LSAs)
•  Integration

–  If seq# in incoming LSA > seq# in saved LSA for source node:
 update LSA for node with new seq#, neighbor list
 rebroadcast LSA to neighbors (→ flooding)

–  Remove saved LSAs if seq# is too far out-of-date
–  Result: Each node discovers current map of the network

•  Build routing table
–  Periodically each node runs the same shortest path algorithm

over its map
–  If each node implements computation correctly and each

node has the same map, then routing tables will be correct

6.02 Spring 2011 Lecture 20, Slide #10

LSA Flooding

A

B

C

D

E

6

6

5

4

0

7

F

G

2

2

8

[F, seq, (G, 8), (C, 2)]

•  LSA travels each link in each direction
–  Don’t bother with figuring out which link LSA came from

•  Termination: each node rebroadcasts LSA exactly once

•  All reachable nodes eventually hear every LSA
–  Time required: number of links to cross network

6.02 Spring 2011 Lecture 20, Slide #11

Dijkstra’s Shortest Path Algorithm

•  Initially
–  nodeset = [all nodes] = set of nodes we haven’t processed
–  spcost = {me:0, all other nodes: !} # shortest path cost

–  routes = {me:--, all other nodes: ?} # routing table

•  while nodeset isn’t empty:
–  find u, the node in nodeset with smallest spcost

–  remove u from nodeset

–  for v in [u’s neighbors]:
•  d = spcost(u) + cost(u,v) # distance to v via u

•  if d < spcost(v): # we found a shorter path!

–  spcost[v] = d

–  routes[v] = routes[u] (or if u == me, enter link from me to v)

•  Complexity: N = number of nodes, L = number of links
–  Finding u (N times): linear search=O(N), using heapq=O(log N)

–  Updating spcost: O(L) since each link appears twice in neighbors

6.02 Spring 2011 Lecture 20, Slide #12

Dijkstra Example

B

C

D

E

A

4

11

5

13 15

19

7

Step u Nodeset
spcost route

A B C D E A B C D E

0 [A,B,C,D,E] 0 ! ! ! ! -- ? ? ? ?

1 A [B,C,D,E] 0 19 7 ! ! -- L0 L1 ? ?

2 C [B,D,E] 0 18 7 22 12 -- L1 L1 L1 L1

3 E [B,D] 0 18 7 22 12 -- L1 L1 L1 L1

4 B [D] 0 18 7 22 12 -- L1 L1 L1 L1

5 D [] 0 18 7 22 12 -- L1 L1 L1 L1

Finding shortest paths from A:

LSAs:
 A: [(B,19), (C, 7)]
 B: [(A,19), (C,11), (D, 4)]
 C: [(A, 7), (B,11), (D,15), (E, 5)]
 D: [(B, 4), (C,15), (E,13)]
 E: [(C, 5), (D,13)]

6.02 Spring 2011 Lecture 20, Slide #13

Why is Network Routing Hard?

•  Inherently distributed problem
–  Information about links and neighbors is local to each node,

but we want global reach

•  Efficiency: want reasonably good paths, and must find
them without huge overhead

•  Handling failures and “churn”
–  Must tolerate link, switch, and network faults
–  Failures and recovery could be arbitrarily timed, messages

could be lost, etc.

•  Scaling to large size very hard (later courses)
–  And on the Internet, many independent, competing

organizations must cooperate
–  Mobility makes the problem harder

6.02 Spring 2011 Lecture 20, Slide #14

Hierarchical Routing

domain-1

domain-2

domain-3

Interior router

 Border router

•  Internet: collection of domains/networks
•  Inside a domain: Route over a graph of routers
•  Between domains: Route over a graph of domains
•  Address: concatenation of “Domain Id”, “Node Id”

6.02 Spring 2011 Lecture 20, Slide #15

Pros and Cons

Advantages
•  Scalable

–  Smaller tables
–  Smaller messages

•  Delegation
–  Each domain can run its

own routing protocol

Disadvantages
•  Mobility is difficult

–  Address depends on geographic location
•  Sup-optimal paths

–  E.g., in the figure, the shortest path between the two machines
should traverse the yellow domain. But hierarchical routing goes
directly between the green and blue domains, then finds the local
destination → path traverses more routers.

 6.02 Spring 2011 Lecture 20, Slide #16

Summary

•  The network layer implements the “glue” that achieves
connectivity
–  Does addressing, forwarding, and routing

•  Forwarding entails a routing table lookup; the table is
built using routing protocol

•  DV protocol: distributes route computation; each node
advertises its best routes to neighbors

•  LS protocol: distributes (floods) neighbor information;
centralizes route computation using shortest-path
algorithm

