DIGITAL

[l ““,‘JV\ RN

SYSTEMS

DN M TAPRTLIL
W ‘

ey
3 >

6.02 Spring 2011
Lecture #20

* path-vector routing

* link-vector routing

* Dijkstra’s shortest path algorithm
* hierarchical routing

Link is Down at Time 4?

A link is considered down
if no advertisements arrive A:(L0,19)@5

over the link; check every A: (None,)@4 A:(L1,22)€2
ADVERT interval, act after
some small number...

A: (None,0)

Routes using a down link
are changed to have cost
o, which will propagate to
neighbors who then
update their cost if they
used you for their route.

A:(LO,7)@1 A:(L0,12)@2

COMMUNICATION

Distance-vector (DV) review

At each ADVERT interval,
nodes tell neighbors A:(L1,18)€2

(dest,cost) for all routes in A:(LO,19)€1 A:(L1,22)€2
their routing table.

A: (None,0)

Nodes add link cost to
neighbor’s routing costs
and keep their routing
table up-to-date with
shortest-path route.

A:(LO,7)@1 A:(L0,12)@2

Paritioned Network at Time 10

An unfortunate

combination of down links A:(L0,19)@5
might partition the A: (None,»)@4 A:(L1,22)@2
network.

A: (None,0)

Routes using a down link
are changed to have cost
o, which will propagate to
neighbors who then
update their cost if they
used you for their route.

A: (None,®)@10 A:(LO,12)@2

Count to Infinity

Now the Bellman-Ford A:(L2,48)@12
update algorithm will A:(L2,25)@11
cause new costs to be A:(L0,19)@5 A:(L1,22)@2
calculated for the dead > 4

routes.

A: (None,0)
L1

For example, C hears from

. s ,0)@10 :(L0,12)@2
E about a route to A with Az (None,)@ Az (L e

total cost 17. Since only A:(L3,17)@11 A:(L1,35)@11
costs are kept, C can't tell A:(L3,40)€12 A:(L0,22)@12
that E was relying on it for The costs spiral higher, eventually

its route of cost 12! passing some bound, at which

point they are recognized as o.

Path-vector (PV) routing

At each ADVERT interval,
nodes tell neighbors A:(L1,[C,A],18)@2

(path,cost) for all routes in A:(LO,[A],19)@1 A:(L1,[C,A],22)@2
their routing table.

A:(None,[],0)

Nodes add link cost to
neighbor’s routing costs
and keep their routing
table up-to-date with
shortest-path route.

A:(LO,[A],7)€1 A:(LO,[C,A],5)@2

Using PV, C won’t accept
routes to A from either D or E
since C appears on the path
they advertise. Unreachable
nodes are quickly removed
from tables.

Fixing “Count to Infinity”

e Problem
— Node C’s route to A breaks, C sets cost to «
— But at next round of advertisements, hears of lower-cost routes
from neighbors, not know the neighbor’s routes used C itself to
get to A.
* Solution

— In addition to reporting costs in advertisements, also report
routing path as discovered incrementally by Bellman-Ford

— Called “path-vector”

— Modify Bellman-Ford update with new rule: nodes should ignore
advertised routes that contain itself in the routing path

— Pros: count-to-infinity “problem” is solved (routing tables
eliminate routes to unreachable nodes more quickly)

— Cons: advertisement overhead is larger

Paritioned Network at Time 10: PV

Nodes connected to down
links change their costs to ~ A:(L0,[A],19)@11 A:(None,[],»)@11
0. A:(None,[],*)@10 A:(Ll,[C,A],22)@2

A:(None,[],0)

A:(None,[],»)@10 A:(LO,[C,A],12)@2
A:(None,[],%)@11

Pros: simple, works well for small networks
Cons: only works for small networks

Link-State Routing LSA Flooding

+ Advertisement step [F, seq, (G, 8), (C, 2)]
— Send information about its links to its neighbors (aka link
state advertisement or LSA):

[seq#, [(nbhrl, linkcost1), (nbhr2, linkcost2), ...]

— Do it periodically (liveness, recover from lost LSAs)
* Integration

— If seq# in incoming LSA > seq# in saved LSA for source node:
update LSA for node with new seq#, neighbor list
rebroadcast LSA to neighbors (— flooding)

— Remove saved LSAs if seq# is too far out-of-date
— Result: Each node discovers current map of the network
* Build routing table

— Periodically each node runs the same shortest path algorithm
over its map

— If each node implements computation correctly and each * All reachable nodes eventually hear every LSA
node has the same map, then routing tables will be correct — Time required: number of links to cross network

* LSA travels each link in each direction
— Don’t bother with figuring out which link LSA came from
* Termination: each node rebroadcasts LSA exactly once

Dijkstra’s Shortest Path Algorithm Dijkstra Example

* Initially Finding shortest paths from A:
— nodeset = [all nodes] = set of nodes we haven’t processed LSAs.
— spcost = {me:0, all other nodes: «} # shortest path cost SA :S'[(B 19), (C, D1

B: [(A,19), (C,11), (D, 4]
. ., C: [(A, 7), (B,11), (D,15), (E, 5)]
* while nodeset isn’t empty: D: [(B, 4), (C,15), (E,13)]
E: [(C, 5, (D,13)]

— routes = {me:--, all other nodes: ?} # routing table

— find u, the node in nodeset with smallest spcost

— remove u from nodeset

— for vin [u’s neighbors]: Step|u| Nodeset spcost route
* d = spcost(u) + cost(u,v) # distance to v via u A B C|D|E|A|B| C| D|E
*+ if d < spcost(v): # we found a shorter path! 0 [ABCDE] | 0 | o | o | o | w|-|2? ? ? ?
= speost[v] =d , _ 1 (Al BceDE | 0|19 7@ | w|~-|LoflLi|2]->

— routes|v] = routes[u] (or if u == me, enter link from me to v)

* Complexity: N = number of nodes, L = number of links 2 |¢| [BDE] o |18 7 |22]12) - |LIJLI L]
— Finding u (N times): linear search=0O(N), using heapg=0(log N) 3 |E (B.D] 0|18 7 22|12 —~ |L1 L1 11)11
— Updating spcost: O(L) since each link appears twice in neighbors 4 |B (D] 0 |18 7 |22]|12| - |L1|L1]|Ll|Ll
5 |D 1] 0 18| 7 |(22|12| -- |L1 | L1 |Ll|L1

Why is Network Routing Hard? Hierarchical Routing

Interior router
* Inherently distributed problem

— Information about links and neighbors is local to each node,

Border router

but we want global reach

» Efficiency: want reasonably good paths, and must find
them without huge overhead

* Handling failures and “churn”
— Must tolerate link, switch, and network faults

— Failures and recovery could be arbitrarily timed, messages
could be lost, etc.

TN
W L/
/

* Scaling to large size very hard (later courses) ¢ Internet: collection of domains/networks

— And on the Internet, many independent, competing o
organizations must cooperate

— Mobility makes the problem harder

Inside a domain: Route over a graph of routers
* Between domains: Route over a graph of domains
e Address: concatenation of “Domain Id”, “Node Id”

Pros and Cons Summary

Advantages * The network layer implements the “glue” that achieves

e Scalable connectivity

a—
— Smaller tables < / / — Does addressing, forwarding, and routing
]

— Smaller messages il TN
\/ / / + Forwarding entails a routing table lookup; the table is
N 3 built using routing protocol

* Delegation
— Each domain can run its =
own routing protocol / L .
AR + DV protocol: distributes route computation; each node

advertises its best routes to neighbors

Disadvantages
e g * LS protocol: distributes (floods) neighbor information;
* Mobility is difficult . . .
Add d d hic Iocati centralizes route computation using shortest-path
- ress aepends on geographic location algorithm

¢ Sup-optimal paths
— E.g., in the figure, the shortest path between the two machines
should traverse the yellow domain. But hierarchical routing goes
directly between the green and blue domains, then finds the local
destination — path traverses more routers.

