
6.02 Spring 2011 Lecture 21, Slide #1

6.02 Spring 2011
Lecture #21

• Redundancy via careful retransmission
• Sequence numbers & acks
• RTT estimation and timeouts
• Stop-and-wait protocol

HKN
Eval!

6.02 Spring 2011 Lecture 21, Slide #2

The Problem

•  Given: Best-effort network in which
–  Packets may be lost arbitrarily
–  Packets may be reordered arbitrarily

–  Packet delays are variable (queueing)

–  Packets may even be duplicated

•  Sender S and receiver R want to communicate reliably
–  Application at R wants all data bytes in exactly the same

order that S sent them
–  Each byte must be delivered exactly once

•  These functions are provided by a reliable transport
protocol
–  Application “layered above” transport protocol

6.02 Spring 2011 Lecture 21, Slide #3

Proposed Plan
•  Transmitter

–  Each packet includes a sequentially increasing sequence number
–  When transmitting, save (xmit time,packet) on un-ACKed list

–  When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list

–  Periodically check un-ACKed list for packets sent awhile ago
•  Retransmit, update xmit time in case we have to do it again!

•  “awhile ago”: xmit time < now － timeout

•  Receiver
–  Send ACK for each received packet, reference sequence number

–  Deliver packet payload to application

6.02 Spring 2011 Lecture 21, Slide #4

Stop and Wait Protocol

 1
RTT

Sender Receiver
Data 1

Data 2

ACK 1

Normal behavior
(no losses)

ACK 2

Data 3

ACK 3

Data 1

X

Data 1

Timeout
Retransmit

Data 1

X

Data 1

S R S R

Data loss +
retransmission

Duplicate
packet reception

R
T
T
 =

 r
ou

n
d
-t

ri
p
 t

im
e

Wanted “exactly once”, got “at least once”

6.02 Spring 2011 Lecture 21, Slide #5

Revised Plan
•  Transmitter

–  Each packet includes a sequentially increasing sequence number
–  When transmitting, save (xmit time,packet) on un-ACKed list

–  When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list

–  Periodically check un-ACKed list for packets sent awhile ago
•  Retransmit, update xmit time in case we have to do it again!

•  “awhile ago”: xmit time < now － timeout

•  Receiver
–  Send ACK for each received packet, reference sequence number

–  Deliver packet payload to application in sequence number order
•  By keeping track of next sequence number to be delivered to app, it’s

easy to recognize duplicate packets and not deliver them a second
time.

6.02 Spring 2011 Lecture 21, Slide #6

Issues
•  Protocol must handle lost packets correctly

–  Lost data: retransmission will provide missing data
–  Lost ACK: retransmission will trigger another ACK from receiver

•  Size of packet buffers
–  At transmitter

•  Buffer holds un-ACKed packets

•  Stop transmitting if buffer space an issue

–  At receiver
•  Buffer holds packets received out-of-order

•  Stop ACKing if buffer space an issue

•  Choosing timeout value: related to RTT
–  Too small: unnecessary retransmissions

–  Too large: poor throughput
•  Delivery stalled while waiting for missing packets

6.02 Spring 2011 Lecture 21, Slide #7

RTT Measurements

6.02 Spring 2011 Lecture 21, Slide #8

CDF of RTT over Verizon Wireless 3G Network
Cumulative probability (CDF)

2000 4000 6000 RTT value (ms)

Mean > 1.5 seconds
Std dev > 1.5 seconds

If we pick timeout
of 6 seconds, then
P(spurious rxmit) is
about 3%.

6.02 Spring 2011 Lecture 21, Slide #9

RTT Can Be Highly Variable

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
TT

 E
st

im
at

e
(m

se
c)

Sample number

Example from a TCP connection over a wide-area wireless link
Mean RTT = 2.4 seconds; Std deviation = 1.5 seconds!

6.02 Spring 2011 Lecture 21, Slide #10

Estimating RTT from Data
•  Gather samples of RTT by comparing time when ACK arrives

with time corresponding packet was transmitted
–  Sample of random variable with some unknown distribution (not

Gaussian!)

•  Chebyshev’s Inequatility tells us that for a random variable X
with mean μ and finite variance σ2:

–  To minimize the chance of unnecessary retransmissions – packet
wasn’t lost, just the round trip time for packet/ACK was long –
we want our timeout to be greater than most observed RTTs.

–  So choose a k that makes the chances small…

–  We need an estimate for μ and σ

prob(X !µ " k!) # 1
k2

6.02 Spring 2011 Lecture 21, Slide #11

Exponential Weighted Moving Average (EWMA)
LPF Frequency Response

H

Ω

α decreases

srtt ← α*rtt_sample + (1-α)*srtt

6.02 Spring 2011 Lecture 21, Slide #12

! = 0.1 ! = 0.5
Responds too quickly?

Response to One Long RTT Sample

6.02 Spring 2011 Lecture 21, Slide #13

RTT changes from 1 to 2

! = 0.1 ! = 0.5

Doesn’t respond quickly enough?

6.02 Spring 2011 Lecture 21, Slide #14

Timeout Algorithm

•  EWMA for smoothed RTT (srtt)
–  srtt ← α*rtt_sample + (1-α)*srtt
–  Typically 0.1 ! α ! 0.25 on networks prone to congestion.

TCP uses α=0.125.

•  Use another EWMA for smoothed RTT deviation (srttdev)
–  Mean linear deviation easy to compute (but could also do std

deviation)

–  dev_sample = |rtt_sample – srtt|

–  srttdev ← β*dev_sample + (1-β)*srttdev,

•  Retransmit Timeout
–  timeout = srtt + k·srttdev

–  k = 4 for TCP

–  Makes the “tail probability” of a spurious retransmission low

6.02 Spring 2011 Lecture 21, Slide #15

Throughput of Stop-and-Wait
•  We want to calculate the time T between successful deliveries

of packets. Throughput = 1/T.

•  We can’t just assume T = RTT since packets get lost
–  Suppose there are N links in the round trip between sender and

receiver

–  If the per-link probability of losing a packet is p, then the
probability it’s delivered over the link is (1-p), and thus the
probability it’s delivered over N links is (1-p)N.

–  So the probability a packet/ACK gets lost is L = 1 – (1-p)N.

•  Now we can write an equation for T:

T = (1! L) "RTT + L " timeout +T()

= RTT + L
1! L

timeout

6.02 Spring 2011 Lecture 21, Slide #16

Bottom Line
•  Suppose RTT is the same for every packet, so timeout = RTT

•  If we can transmit 100 packets/sec and the RTT is 100 ms,
then, using stop-and-wait, the maximum throughput is 10
packets/sec.
–  Urk! Only 10% of the capacity of the channel.

–  We need a better reliable transmission protocol…
next time: sliding window protocol

T = RTT + L
1! L

RTT = 1
1! L

RTT

Throughput = 1! L
RTT

=
1! p()N

RTT

