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6.02 Spring 2011 
Lecture #21 

• Redundancy via careful retransmission 
• Sequence numbers & acks 
• RTT estimation and timeouts 
• Stop-and-wait protocol 

HKN 
Eval! 
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The Problem 

•  Given: Best-effort network in which 
–  Packets may be lost arbitrarily 
–  Packets may be reordered arbitrarily 

–  Packet delays are variable (queueing) 

–  Packets may even be duplicated 
 

•  Sender S and receiver R want to communicate reliably 
–  Application at R wants all data bytes in exactly the same 

order that S sent them 
–  Each byte must be delivered exactly once 

 

•  These functions are provided by a reliable transport 
protocol 
–  Application “layered above” transport protocol 
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Proposed Plan 
•  Transmitter 

–  Each packet includes a sequentially increasing sequence number 
–  When transmitting, save (xmit time,packet) on un-ACKed list 

–  When acknowledgement (ACK) is received from the destination 
for a particular sequence number, remove the corresponding 
entry from un-ACKed list 

–  Periodically check un-ACKed list for packets sent awhile ago 
•  Retransmit, update xmit time in case we have to do it again! 

•  “awhile ago”: xmit time < now － timeout 
 

•  Receiver 
–  Send ACK for each received packet, reference sequence number 

–  Deliver packet payload to application 
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Stop and Wait Protocol 
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Revised Plan 
•  Transmitter 

–  Each packet includes a sequentially increasing sequence number 
–  When transmitting, save (xmit time,packet) on un-ACKed list 

–  When acknowledgement (ACK) is received from the destination 
for a particular sequence number, remove the corresponding 
entry from un-ACKed list 

–  Periodically check un-ACKed list for packets sent awhile ago 
•  Retransmit, update xmit time in case we have to do it again! 

•  “awhile ago”: xmit time < now － timeout 

•  Receiver 
–  Send ACK for each received packet, reference sequence number 

–  Deliver packet payload to application in sequence number order 
•  By keeping track of next sequence number to be delivered to app, it’s 

easy to recognize duplicate packets and not deliver them a second 
time. 
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Issues 
•  Protocol must handle lost packets correctly 

–  Lost data: retransmission will provide missing data 
–  Lost ACK: retransmission will trigger another ACK from receiver 

 

•  Size of packet buffers 
–  At transmitter 

•  Buffer holds un-ACKed packets 

•  Stop transmitting if buffer space an issue 

–  At receiver 
•  Buffer holds packets received out-of-order 

•  Stop ACKing if buffer space an issue 
 

•  Choosing timeout value: related to RTT 
–  Too small: unnecessary retransmissions 

–  Too large: poor throughput 
•  Delivery stalled while waiting for missing packets 
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RTT Measurements 
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CDF of RTT over Verizon Wireless 3G Network 
Cumulative probability (CDF) 

2000 4000 6000 RTT value (ms) 

Mean > 1.5 seconds 
Std dev > 1.5 seconds 

If we pick timeout 
of 6 seconds, then 
P(spurious rxmit) is 
about 3%. 
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RTT Can Be Highly Variable 
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Sample number 

Example from a TCP connection over a wide-area wireless link 
Mean RTT = 2.4 seconds; Std deviation = 1.5 seconds! 
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Estimating RTT from Data 
•  Gather samples of RTT by comparing time when ACK arrives 

with time corresponding packet was transmitted 
–  Sample of random variable with some unknown distribution (not 

Gaussian!) 

•  Chebyshev’s Inequatility tells us that for a random variable X 
with mean μ and finite variance σ2: 

–  To minimize the chance of unnecessary retransmissions – packet 
wasn’t lost, just the round trip time for packet/ACK was long – 
we want our timeout to be greater than most observed RTTs. 

–  So choose a k that makes the chances small… 

–  We need an estimate for μ and σ 

prob( X !µ " k! ) # 1
k2
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Exponential Weighted Moving Average (EWMA)  
LPF Frequency Response 

H 

Ω 

α decreases 

srtt ← α*rtt_sample + (1-α)*srtt 
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! = 0.1 ! = 0.5 
Responds too quickly? 

Response to One Long RTT Sample 
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RTT changes from 1 to 2 

! = 0.1 ! = 0.5 

Doesn’t respond quickly enough? 
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Timeout Algorithm 

•  EWMA for smoothed RTT (srtt) 
–  srtt ← α*rtt_sample + (1-α)*srtt 
–  Typically 0.1 ! α ! 0.25 on networks prone to congestion.  

TCP uses α=0.125. 
 

•  Use another EWMA for smoothed RTT deviation (srttdev) 
–  Mean linear deviation easy to compute (but could also do std 

deviation) 

–  dev_sample = |rtt_sample – srtt| 

–  srttdev ← β*dev_sample + (1-β)*srttdev,  
 

•  Retransmit Timeout 
–  timeout = srtt + k·srttdev 

–  k = 4 for TCP 

–  Makes the “tail probability” of a spurious retransmission low 
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Throughput of Stop-and-Wait 
•  We want to calculate the time T between successful deliveries 

of packets.  Throughput = 1/T. 
 

•  We can’t just assume T = RTT since packets get lost 
–  Suppose there are N links in the round trip between sender and 

receiver 

–  If the per-link probability of losing a packet is p, then the 
probability it’s delivered over the link is (1-p), and thus the 
probability it’s delivered over N links is (1-p)N. 

–  So the probability a packet/ACK gets lost is L = 1 – (1-p)N. 
 

•  Now we can write an equation for T: 

T = (1! L) "RTT + L " timeout +T( )

= RTT + L
1! L

timeout
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Bottom Line 
•  Suppose RTT is the same for every packet, so timeout = RTT 

 
 
 
 
 
 
 
 

•  If we can transmit 100 packets/sec and the RTT is 100 ms, 
then, using stop-and-wait, the maximum throughput is 10 
packets/sec. 
–  Urk!  Only 10% of the capacity of the channel. 

–  We need a better reliable transmission protocol… 
next time: sliding window protocol 

T = RTT + L
1! L

RTT = 1
1! L

RTT

Throughput = 1! L
RTT

=
1! p( )N

RTT


