
6.02 Spring 2011 Lecture 22, Slide #1

6.02 Spring 2011
Lecture #22

• Sliding-window protocol
• Sizing the window

HKN
Eval!

6.02 Spring 2011 Lecture 22, Slide #2

•  Stop-and-wait protocol too slow
•  Throughput = 1 packet per RTT
•  1500 byte pkt, 100 ms RTT

throughput pegged at 15 KBytes/s
•  With packet loss & timeout,

throughput even lower

•  Solution: Use a window
–  Allow W packets outstanding in the

network at once (W is called the
window size).

–  Overlap transmissions with ACKs

Host A Host B
Data 1

Data 2

ACK

Improving Performance

6.02 Spring 2011 Lecture 22, Slide #3

Solution: Use a Sliding Window

•  Senders advances the window by 1
for each in-sequence ack it receives
–  I.e., window slides
–  So, idle period reduces
–  Pipelining

•  Assume that the window size, W, is
fixed and known
–  Later, we will discuss how one

might set it
–  W = 3 in the example on the left

SENDER RECEIVER

6.02 Spring 2011 Lecture 22, Slide #4

Sndr

Rcvr

window = 1-5

1 2 3 4 5

p1

a1

6

Sliding Window in Action

window = 2-6

a2

p2

W = 5 in this example

6.02 Spring 2011 Lecture 22, Slide #5

Sndr

Rcvr

1 2 3 4 5

p1

a1

6

a3

p3

Sliding Window in Action

window = 3-7

a2

p2

7

window = 2-6

Window definition: If window is W, then max number of
unacknowledged packets is W

This is a fixed-size sliding window

6.02 Spring 2011 Lecture 22, Slide #6

Sliding Window Implementation
•  Transmitter

–  Each packet includes a sequentially increasing sequence number
–  When transmitting, save (xmit time,packet) on un-ACKed list

–  Transmit packets if len(un-ACKed list) ! window size W

–  When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list

–  Periodically check un-ACKed list for packets sent awhile ago
•  Retransmit, update xmit time in case we have to do it again!

•  “awhile ago”: xmit time < now － timeout

•  Receiver
–  Send ACK for each received packet, reference sequence number

–  Deliver packet payload to application in sequence number order
•  Save delivered packets in sequence number order in local buffer

(remove duplicates). Discard incoming packets which have already
been delivered (caused by retransmission due to lost ACK).

•  Keep track of next packet application expects. After each reception,
deliver as many in-order packets as possible.

6.02 Spring 2011 Lecture 22, Slide #7

Issues

•  Timeout chosen as before.

•  Size of packet buffers
–  At transmitter

•  Buffer holds un-ACKed packets

•  Stop transmitting if buffer space an issue

–  At receiver
•  Buffer holds packets received out-of-order

•  Stop ACKing if buffer space an issue

•  Choosing window size W
–  Too small: some links sit idle, throughput less than maximum

–  Too large: additional packets sit in queues, increasing latency
without increasing throughput.

–  Lost packets diminish effective window size (transmitter is
limiting itself, but packet is no longer in the network).

6.02 Spring 2011 Lecture 22, Slide #8

Sender
Receiver

1
2
3
4
5

6
7
8
9
10

X

1
2
3
4
5

6
7

9
10

11
12

13

14
8

11
12

13
8

T
IM

E
O

U
T

RXMIT

ACKs

Packet lost

Sender’s window size = 5

6.02 Spring 2011 Lecture 22, Slide #9

Sndr

Rcvr

window = 1-5

1 2 3 4 5

p1

a1

x

6

a3

p3

window = 2-6

Sliding Window: Handling Packet Loss

6.02 Spring 2011 Lecture 22, Slide #10

Sndr

1 2 3 4 5

p1

a1

x

6

a3

p3

a8

p4

Timeout

2 7 8 9 10

Rcvr

The receiver has to save packets 3 through 10 until packet 2
arrives, which will allow it to deliver packets 2 through 10 to the
application. Note that with this definition of the window protocol,
there’s no limit to the number of packets that might arrive out of
order.

p7

a6

p6

a5

p5

a2

p2

a7 a9

p8 p9 p10

a10 a4

Sliding Window: Handling Packet Loss

6.02 Spring 2011 Lecture 22, Slide #11

•  If we can get “Idle” to 0, will
achieve goal

•  W = #packets in window
•  B = rate of slowest (bottleneck) link
•  RTT = avg delay

•  If W = B·RTT, path will be fully
utilized
–  The “bandwidth-delay

product”
–  Key concept in transport

protocols

Host A Host B

Send?

OK, 3 pkts

Idle

Setting the Window Size:
Apply Little’s Law

6.02 Spring 2011 Lecture 22, Slide #12

Throughput of Sliding Window Protocol

•  If there are no lost packets, protocol delivers W packets every
RTT seconds, so throughput is limited to W/RTT.
–  Maximum throughput is also limited by rate of bottleneck link

(B): throughput = min(B, W/RTT)

•  Goal: select W so that (slowest) links are never idle due to
lack of packets
–  Avoid overfilling queues since that increases packet latency and,

if timeouts are triggered, possibility of spurious retransmissions.
•  Measured RTT includes queuing delay = RTTmin + Qdelay

•  As Qdelay increases, so does W, which increases Qdelay, …

•  Use B·RTTmin when calculating W

–  Slightly larger than B·RTTmin to ensure bottleneck link is busy
even if there are packet losses
•  total # of transmissions, T, for successful delivery

 T = 1 + L·(1 + L·(1+…)) = 1 + L + L2 + … = 1/(1－L)
where L = 1-(1-per_link_loss)# hops in roundtrip is the round-trip loss rate.

•  Max throughput is 1/T = 1－L = (1－p)# hops in roundtrip

6.02 Spring 2011 Lecture 22, Slide #13

Example

Q: The sender’s window size is 10 packets. At what
approximate rate (in packets per second) will the protocol
deliver a multi-gigabyte file from the sender to the receiver?
Assume that there is no other traffic in the network and
packets can only be lost because the queues overflow.

6.02 Spring 2011 Lecture 22, Slide #14

Example

Q: You would like to double the
throughput of this sliding
window transport protocol. To
do so, you can apply one of the
following techniques:
a.  Double window size W
b.  Halve the propagation delay

of the links
c.  Double the speed of the link

between the Switch and
Receiver.

For each of the following sender window sizes, list which of the
above technique(s), if any, can approximately double the
throughput: W=10, W=50, W=30.

6.02 Spring 2011 Lecture 22, Slide #15

“Shouldn’t that be –sin(x)?”

http://verydemotivational.memebase.com/?s=dancing

