

Reliability

- Digitization
- Error detection
 - Gaussian noise models, predicting BER
 - CRC, checksums
 - Parity, block codes, convolutional codes
- Error correction
 - Single-error correction in block codes
 - Viterbi algorithm: maximum-likelihood decoder
- Reliable sharing via media access control
- Best-effort packet switching
 - Retransmission to recover from dropped packets
- · Approaches to reliability
 - Redundancy
 - Detect failure, invoke recovery mechanism
 - Accurate models \rightarrow simulation

Lecture 24, Slide #3

Sharing & Scalability

- · Dedicated links are impossibly expensive
- Time-division multiplexing
- Contention protocols for bursty traffic
- Frequency domain
 - Spectrum sharing by bandwidth-limited signals
 - Modulation/demodulation
 - Filters
- Network-level sharing
 - MAC protocols (TDMA, contention)
 - Best-effort packet networks, queues
 - Queues
- Scalability

6.02 Spring 2011

- Use local mechanism instead of global mechanism

Approach

- Understand tools and techniques
 - Concepts and principles
 - Labs
 - Small problems (calculations, analysis)
- Begin to understand trade-offs
 - The essence of all engineering systems
 - Science, art, or a mix?
 - Principles and tools matter, as do intuition and experience

Trade-Offs

- A number of techniques how to apply them and make them work together?
- Reliability: apply redundancy in creative ways to build reliable systems out of unreliable components
- · Sharing: reduce the amount of resources consumed
- Scalability: hide information, reduce amount of state to be managed

6.02 Spring 2011

Lecture 24, Slide #5

6.02 Spring 2011

Lecture 24, Slide #6

EECS Ideas

- Signals and systems
 - LTI, superposition, unit-sample response, frequency response, modulation
- · Algorithms, centralized and distributed
 - Viterbi decoding, shortest paths (Dijkstra), distance vector (Bellman-Ford), compression (Huffman, LZW)
- Computer systems
 - Protocols, abstraction and modularity, layering
- Applied probability
 - Continuous-domain probability (PDF & CDF): bit errors
 - Discrete-domain probability: MAC protocol analysis
 - Basic queueing models: packet switch sharing analysis
- Methods: design, simulation, experimentation

Discussion

- Which activities worked well?
 - Lectures
 - Recitations
 - Labs: did they help you understand the material? Were they interesting?
 - Lecture notes?
 - Online psets: how effective?
 - Tutorial problems & problems at end of chapters?
 - Were the quizzes fair?
- Did we cover too much? Too little?
- Would you like to be an LA in a future term?