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CHAPTER 13
Fourier Analysis and Spectral

Representation of Signals

We have seen in the previous chapter that the action of an LTI system on a sinusoidal or
complex exponential input signal can be represented effectively by the frequency response
H(Ω) of the system. By superposition, it then becomes easy—again using the frequency
response—to determine the action of an LTI system on a weighted linear combination of si-
nusoids or complex exponentials (as illustrated in Example 3 of the preceding chapter). The
natural question now is how large a class of signals can be represented in this manner. The
short answer to this question: most signals you are likely to be interested in!

The tool for exposing the decomposition of a signal into a weighted sum of sinusoids
or complex exponentials is Fourier analysis. We first discuss the Discrete-Time Fourier
Transform (DTFT), which we have actually seen hints of already and which applies to the
most general classes of signals. We then move to the Discrete-Time Fourier Series (DTFS),
which constructs a similar representation for the special case of periodic signals, or for sig-
nals of finite duration. The DTFT development provides some useful background, context
and intuition for the more special DTFS development, but may be skimmed over on an
initial reading (i.e., understand the logical flow of the development, but don’t struggle too
much with the mathematical details).

� 13.1 The Discrete-Time Fourier Transform

We have in fact already derived an expression in the previous chapter that has the flavor
of what we are looking for. Recall that we obtained the following representation for the
unit sample response h[n] of an LTI system:

h[n] =
1

2π

Z

<2π>
H(Ω)e jΩn dΩ , (13.1)
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where the frequency response, H(Ω), was defined by

H(Ω) =
∞
∑

m=−∞
h[m]e− jΩm . (13.2)

Equation (13.1) can be interpreted as representing the signal h[n] by a weighted combina-
tion of a continuum of exponentials, of the form e jΩn, with frequencies Ω in a 2π-range,
and associated weights H(Ω) dΩ.

As far as these expressions are concerned, the signal h[n] is fairly arbitrary; the fact that
we were considering it as the unit sample response of a system was quite incidental. We
only required it to be a signal for which the infinite sum on the right of Equation (13.2)
was well-defined. We shall accordingly rewrite the preceding equations in a more neutral
notation, using x[n] instead of h[n]:

x[n] =
1

2π

Z

<2π>
X(Ω)e jΩn dΩ , (13.3)

where X(Ω) is defined by

X(Ω) =
∞
∑

m=−∞
x[m]e− jΩm . (13.4)

For a general signal x[·], we refer to the 2π-periodic quantity X(Ω) as the discrete-time
Fourier transform (DTFT) of x[·]; it would no longer make sense to call it a frequency
response. Even when the signal is real, the DTFT will in general be complex at each Ω.

The DTFT synthesis equation, Equation (13.3), shows how to synthesize x[n] as a
weighted combination of a continuum of exponentials, of the form e jΩn, with frequen-
cies Ω in a 2π-range, and associated weights X(Ω) dΩ. From now on, unless mentioned
otherwise, we shall take Ω to lie in the range [−π,π].

The DTFT analysis equation, Equation (13.4), shows how the weights are determined.
We also refer to X(Ω) as the spectrum or spectral distribution or spectral content of x[·].

Example 1 (Spectrum of Unit Sample Function) Consider the signal x[n] = δ[n], the unit
sample function. From the definition in Equation (13.4), the spectral distribution is given
by X(Ω) = 1, because x[n] = 0 for all n �= 0, and x[0] = 1. The spectral distribution is thus
constant at the value 1 in the entire frequency range [−π,π]. What this means is that it
takes the addition of equal amounts of complex exponentials at all frequencies in a 2π-
range to synthesize a unit sample function, a perhaps surprising result. What’s happening
here is that all the complex exponentials reinforce each other at time n = 0, but effectively
cancel each other out at every other time instant.

Example 2 (Phase Matters) What if X(Ω) has the same magnitude as in the previous
example, so |X(Ω)| = 1, but has a nonzero phase characteristic, ∠X(Ω) = −αΩ for some
α �= 0? This phase characteristic is linear in Ω. With this,

X(Ω) = 1.e− jαΩ = e− jαΩ .
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To find the corresponding time signal, we simply carry out the integration in Equation
(13.3). If α is an integer, the integral

x[n] =
1

2π

Z

<2π>
e− jαΩe jΩn dΩ =

1
2π

Z

<2π>
e j(n−α)Ω dΩ

yields the value 0 for all n �= α. To see this, note that

e j(n−α)Ω = cos
�

(n− α)Ω
�

+ j sin
�

(n− α)Ω
�

,

and the integral of this expression over any 2π-interval is 0, when n − α is a nonzero
integer. However, if n−α = 0, i.e., if n = α, the cosine evaluates to 1, the sine evaluates to
0, and the integral above evaluates to 1. We therefore conclude that when α is an integer,

x[n] = δ[n− α] .

The signal is just a shifted unit sample (delayed by α if α > 0, and advanced by |α| oth-
erwise). The effect of adding the phase characteristic to the case in Example 1 has been to
just shift the unit sample in time.

For non-integer α, the answer is a little more intricate:

x[n] =
1

2π

Z π

−π
e− jαΩe jΩn dΩ

=
1

2π
e j(n−α)Ω

j(n− α)

���
π

−π

=
sin

�
π(n− α)

�

π(n− α)

This time-function is referred to as a “sinc” function. We encountered this function when
determining the unit sample response of an ideal lowpass filter in the previous chapter.

Example 3 (A Bandlimited Signal) Consider now a signal whose spectrum is flat but
band-limited:

X(Ω) =
�

1 for |Ω| < Ωc
0 for Ωc ≤ |Ω| ≤ π

The corresponding signal is again found directly from Equation (13.3). For n �= 0, we get

x[n] =
1

2π

Z Ωc

−Ωc
e jΩn dΩ

=
1

2π
e jΩ

jn

���
Ωc

−Ωc

=
sin(Ωcn)

πn
, (13.5)
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which is again a sinc function. For n = 0, Equation (13.3) yields

x[n] =
1

2π

Z Ωc

−Ωc
1 dΩ =

Ωc

π
.

(This is exactly what we would get from Equation (13.5) if n was treated as a continuous
variable, and the limit of the sinc function as n → 0 was evaluated by L’Hôpital’s rule—a
useful mnemonic, but not a derivation!)

From our study of the analogous equations for h[·] in the previous chapter, we know
that the DTFT of x[·] is well-defined when this signal is absolutely summable,

∞
∑

m=−∞

���x[m]
��� ≤ µ < ∞

for some µ. However, the DTFT is in fact well-defined for signals that satisfy less demand-
ing constraints, for instance square summable signals,

∞
∑

m=−∞

���x[m]
���
2
≤ µ < ∞ .

The sinc function in the examples above is actually not absolutely summable because it
follows off too slowly—only as 1/n—as |n|→∞. However, it is square summable.

A digression: One can also define the DTFT for signals x[n] that do not converge to 0 as
|n|→∞, provided they grow no faster than polynomially in n as |n|→∞. An example
of such a signal of slow growth would be x[n] = e jΩ0n for all n, whose spectrum must be
concentrated at Ω = Ω0. However, the corresponding X(Ω) turns out to no longer be an
ordinary function, but is a (scaled) Dirac impulse in frequency, located at Ω = Ω0:

X(Ω) = 2πδ(Ω−Ω0) .

You may have encountered the Dirac impulse in other settings. The unit impulse at Ω = Ω0
can be thought of as a “function” that has the value 0 at all points except at Ω = Ω0, and has
unit area. This is an instance of a broader result, namely that signals of slow growth possess
transforms that are generalized functions (e.g., impulses), which have to be interpreted in
terms of what they do under an integral sign, rather than as ordinary functions. It is
partly in order to avoid having to deal with impulses and generalized functions in treating
sinusoidal and periodic signals that we shall turn to the Discrete-Time Fourier Series rather
than the DTFT. End of digression!

We make one final observation before moving to the DTFS. As shown in the previous
chapter, if the input x[n] to an LTI system with frequency response H(Ω) is the (everlasting)
exponential signal e jΩn, then the output is y[n] = H(Ω)e jΩn. By superposition, if the input
is instead the weighted linear combination of such exponentials that is given in Equation
(13.3), then the corresponding output must be the same weighted combination of responses,
so

y[n] =
1

2π

Z

<2π>
H(Ω)X(Ω)e jΩn dΩ . (13.6)

However, we also know that the term H(Ω)X(Ω) multiplying the complex exponential in
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this expression must be the DTFT of y[·], so

Y(Ω) = H(Ω)X(Ω) . (13.7)

Thus, the time-domain convolution relation y[n] = (h∗ x)[n] has been converted to a simple
multiplication in the frequency domain. This is a result we saw in the previous chapter
too, when discussing the frequency response of a series or cascade combination of two LTI
systems: the relation h[n] = (h1 ∗ h2)[n] in the time domain mapped to an overall frequency
response of H(Ω) = H1(Ω)H2(Ω) that was simply the product of the individual frequency
responses. This is a major reason for the power of frequency-domain analysis; the more
involved operation of convolution in time is replaced by multiplication in frequency.

� 13.2 The Discrete-Time Fourier Series

The DTFT synthesis expression in Equation (13.3) expressed x[n] as a weighted sum of a
continuum of complex exponentials, involving all frequencies Ω in [−π,π]. Suppose now
that x[n] is a periodic signal of (integer) period P, so

x[n + P] = x[n]

for all n. This signal is completely specified by the P values it takes in a single period, for
instance the values x[0], x[1], . . . , x[P− 1]. It would seem in this case as though we should
be able to get away with using a smaller number of complex exponentials to construct x[n]
on the interval [0, P − 1] and thereby for all n. The discrete-time Fourier series (DTFS)
shows that this is indeed the case.

Before we write down the DTFS, a few words of reassurance are warranted. The expres-
sions below may seem somewhat bewildering at first, with a profusion of symbols and
subscripts, but once we get comfortable with what the expressions are saying, interpret
them in different ways, and do some examples, they end up being quite straightforward.
So don’t worry if you don’t get it all during the first pass through this material—allow
yourself some time, and a few visits, to get comfortable!

� 13.2.1 The Synthesis Equation

The essence of the DTFS is the following statement:

Any P-periodic signal x[n] can be represented (or synthesized) as a weighted linear
combination of P complex exponentials (or spectral components), where the frequencies
of the exponentials are located evenly in the interval [−π,π], starting in the middle at
the frequency Ω0 = 0 and increasing outwards in both directions in steps of Ω1 = 2π/P.

More concretely, the claim is that any P-periodic DT signal x[n] can be represented in the
form

x[n] = ∑
k=�P�

AkejΩkn , (13.8)

where we write k = �P� to indicate that k runs over any set of P consecutive integers. The
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Figure 13-1: When P is even, the end frequencies are at ±π and the Ωk values are as shown in the pictures
on the left for P = 6. When P is odd, the end frequencies are at ±(π− Ω1

2 ), as shown on the right for P = 3.

Fourier series coefficients or spectral weights Ak in this expression are complex numbers in
general, and the spectral frequencies Ωk are defined by

Ωk = kΩ1 , where Ω1 =
2π
P

. (13.9)

We refer to Ω1 as the fundamental frequency of the periodic signal, and to Ωk as the k-th
harmonic. Note that Ω0 = 0.

Note that the expression on the right side of Equation (13.8) does indeed repeat period-
ically every P time steps, because each of the constituent exponentials

e jΩkn = e jkΩ1n = e jkn(2π/P) = cos(k
2π
P

n) + j sin(k
2π
P

n) (13.10)

repeats when n changes by an integer multiple of P.
It also follows from Equation (13.10) that changing the frequency index k by P — or more

generally by any positive or negative integer multiple of P — brings the exponential in that
equation back to the same point on the unit circle, because the corresponding frequency
Ωk has then changed by an integer multiple of 2π. This is why it suffices to choose k = �P�
in the DTFS representation.

Putting all this together, it follows that the frequencies of the complex exponentials
used to synthesize a P-periodic signal x[n] via the DTFS are located evenly in the interval
[−π,π], starting in the middle at the frequency Ω0 = 0 and increasing outwards in both
directions in steps of Ω1 = 2π/P. In the case of an even value of P, such as the case P = 6 in
Figure 13-1 (left), the end frequencies will be at ±π (we need only one of these frequencies,
not both, as they translate to the same point on the unit circle when we write e jΩkn). In
the case of an odd value of P, such as the case P = 3 shown in Figure 13-1 (right), the end
points are ±(π− Ω1

2 ).
The weights {Ak} collectively constitute the spectrum of the periodic signal, and we

typically plot them as a function of the frequency index k, as in Figure 13-2 The spectral
weights in these simple sinusoidal examples have been determined by inspection, through
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Figure 13-2: The spectrum of two periodic signals, plotted as a function of the frequency index, k, showing
the real and imaginary parts for each case. P = 11 (odd).

direct application of Euler’s identity. We turn next to a more general and systematic way
of determining the spectrum for an arbitrary real P-periodic signal.

� 13.2.2 The Analysis Equation

We now address the task of computing the spectrum of a P-periodic x[n], i.e., determining
the Fourier coefficients Ak. Note first that the {Ak} comprise P coefficients that in general
can be complex numbers, so in principle we have 2P real numbers that we can choose
to match the P real values that a P-periodic real signal x[n] takes in a period. It would
therefore seem that we have more than enough degrees of freedom to choose the Fourier
coefficients to match a P-periodic real signal. (If the signal x[n] was an arbitrary complex
P-periodic signal, hence specified by 2P real numbers, we would have exactly the right
number of degrees of freedom.)

It turns out—and we shall prove this shortly—that for a real signal x[n] the Fourier
coefficients satisfy certain symmetry properties, which end up reducing our degrees of
freedom to precisely P rather than 2P. Specifically, we can show that

Ak = A∗
−k , (13.11)
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so the real part of Ak is an even function of k, while the imaginary part of Ak is an odd
function of k. This also implies that A0 is purely real, and also that in the case of even
P, the values AP/2 = A−P/2 are purely real. (These properties should remind you of the
symmetry properties we exposed in connection with frequency responses in the previous
chapter — but that’s no surprise, because the DTFS is a similar kind of object.)

Making a careful count now of the actual degrees of freedom, we find that it takes
precisely P real parameters to specify the spectrum {Ak} for a real P-periodic signal. So
given the P real values that x[n] takes over a single period, we expect that Equation (13.8)
will give us precisely P equations in P unknowns. (For the case of a complex signal, we
will get 2P equations in 2P unknowns.)

To determine the mth Fourier coefficient Am in the expression in Equation (13.8), where
m is one of the values that k can take, we first multiply both sides of Equation (13.8) by
e− jΩmn and sum over P consecutive values of n. This results in the equality

∑
n=�P�

x[n]e− jΩmn = ∑
n=�P�

∑
k=�P�

Akej(Ωk−Ωm)n

= ∑
k=�P�

Ak ∑
n=�P�

e jΩ1(k−m)n

= ∑
k=�P�

Ak ∑
n=�P�

e j2π(k−m)n/P .

The summation over n in the last equality involves summing P consecutive terms of a
geometric series. Using the fact that for r �= 1

1 + r + r2 + · · ·+ rP−1 =
1− rP

1− r
,

it is not hard to show that the above summation over n ends up evaluating to 0 for k �= m.
The only value of k for which the summation over n survives is the case k = m, for which
each term in the summation reduces to 1, and the sum ends up equal to P. We therefore
arrive at

∑
n=�P�

x[n]e− jΩmn = AmP

or, rearranging and going back to writing k instead of m,

Ak =
1
P ∑

n=�P�
x[n]e− jΩkn . (13.12)

This DTFS analysis equation — which holds whether x[n] is real or complex — looks very
similar to the DTFS synthesis equation, Equation (13.8), apart from e− jΩkn replacing e jΩkn,
and the scaling by P.

Two particular observations that follow directly from the analysis formula:

A0 =
1
P ∑

n=�P�
x[n] , (13.13)
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and, for the case of even P, where ΩP/2 = π,

AP/2 = A−P/2 =
1
P ∑

n=�P�
(−1)nx[n] . (13.14)

The symmetry properties of Ak that we stated earlier in the case of a real signal follow
directly from this analysis equation, as we leave you to verify. Also, since A−k = A∗

k for a
real signal, we can combine the terms

Ake− jΩkn + AkejΩkn

into the single term
2|Ak| cos(Ωkn + ∠Ak) .

Thus, for even P,

x[n] = A0 +
P/2

∑
k=1

2|Ak| cos(Ωkn + ∠Ak) ,

while for odd P the only change is that the upper limit becomes (P− 1)/2.

� 13.2.3 The Aperiodic Limit, P →∞
There is a slightly modified form in which the DTFS is sometimes written:

x[n] =
1
P ∑

k=�P�
XkejΩkn , (13.15)

which just corresponds to working with a scaled version of the Ak that we have used so
far, namely

Xk = PAk = ∑
n=�P�

x[n]e− jΩkn . (13.16)

This form of the DTFS is useful when one considers the limiting case of aperiodic signals
by letting P →∞, (2π/P) → dΩ, and Ωk → Ω. In this limiting case, it is easy to deduce
from Equation (13.12) that Xk → X(Ω), precisely the DTFT of the aperiodic signal that we
defined in Equation (13.4). Correspondingly, the DTFS synthesis equation, Equation (13.8),
in this limiting case becomes precisely the expression in Equation (13.3).

� 13.2.4 Action of an LTI System on a Periodic Input

Suppose the input x[·] to an LTI system with frequency response H(Ω) is P-periodic. This
signal can be represented as a weighted sum of exponentials, by the DTFS in Equation
(13.8). It follows immediately that the output of the system is given by

y[n] = ∑
k=�P�

H(Ωk)AkejΩkn =
1
P ∑

k=�P�
H(Ωk)XkejΩkn .
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Figure 13-3: Effect of band-limiting a transmission, showing what happens when a periodic signal goes
through a lowpass filter.

This immediately shows that the output y[·] is again P-periodic, with (scaled) spectral
coefficients given by

Yk = H(Ωk)Xk . (13.17)

So knowledge of the input spectrum and of the system’s frequency response suffices to
determine the output spectrum. This is precisely the DTFS version of the DTFT result in
Equation (13.7).

As an illustration of the application of this result, Figure 13-3 shows what happens
when a periodic signal goes through an ideal lowpass filter, for which H(Ω) = 1 only for
|Ω| < Ωc < π, with H(Ω) = 0 everywhere else in [−π,π]. The result is that all spectral
components of the input at frequencies above the cutoff frequency Ωc are no longer present
in the output. The corresponding output signal is thus more slowly varying—a “blurred”
version of the input—because it does not have the higher-frequency components that allow
it to vary more rapidly.

� 13.2.5 Application of the DTFS to Finite-Duration Signals

The DTFS turns out to be useful in settings that do not involve periodic signals, but rather
signals of finite duration. Suppose a signal x[n] takes nonzero values only on some finite
interval, say [0, P− 1] for example. We are not forbidding x[n] from taking the value 0 for
n within this interval, but are saying that x[n] = 0 for all n outside this interval. If we now
compute the DT Fourier transform of this signal, according to the definition in Equation
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(13.4), we get

X(Ω) =
P−1

∑
n=0

x[n]e− jΩn . (13.18)

The corresponding representation of x[n] by a weighted combination of complex exponen-
tials would then be the expression in Equation (13.3), involving a continuum of frequencies.
However, it is possible to get a more economical representation of x[n] by using the DT
Fourier series.

In order to do this, consider the new signal xP[·] obtained by taking the portion of x[·]
that lies in the interval [0, P− 1] and replicating it periodically outside this interval, with
period P. This results in xP[n + P] = xP[n] for all n, with xP[n] = x[n] for n in the interval
[0, P− 1]. We can represent this periodic signal by its DTFS:

xP[n] =
1
P ∑

k=<P>

XkejΩkn , (13.19)

where

Xk = ∑
n=<P>

xP[n]e− jΩkn =
P−1

∑
n=0

x[n]e− jΩkn . (13.20)

(For consistency, we should perhaps have used the notation XPk instead of Xk, but we are
trying to keep our notation uncluttered.)

We can now represent x[n] by the expression in Equation (13.19), in terms of just P
complex exponentials at the frequencies Ωk defined earlier (in our development of the
DTFS), rather than complex exponentials at a continuum of frequencies. However, this
representation only captures x[n] in the interval [0, P−1]. Outside of this interval, we have
to ignore the expression, instead invoking our knowledge that x[n] is actually 0 outside.

Another observation worth making from Equations (13.18) and (13.20) is that the
(scaled) DTFS coefficients Xk are actually simply related to the DTFT X(Ω) of the finite-
duration signal x[n]:

Xk = X(Ωk) , (13.21)

so the (scaled) DTFS coefficients Xk are just P samples of the DTFT X(Ω). Thus any method
for computing the DTFS for (the periodic extension of) a finite-duration signal will yield
samples of the DTFT of this finite-duration signal (keep track of our use of DTFS versus
DTFT here!). And if one wants to evaluate the DTFT of this finite-duration signal at a
larger number of sample points, all that needs to be done is to consider x[n] to be of finite-
duration on a larger interval, of length P� > P, where of course the additional signal values
in the larger interval will all be 0; this is referred to a zero-padding. Then computing the
DTFS of (the periodic extension of) x[n] for this longer interval will yield P� samples of the
underlying DTFT of the signal.

As an application of the above results on finite-duration signals, consider the case of
an LTI system whose unit sample response h[n] is known to be 0 for all n outside of some
interval [0, nh], and whose input x[n] is known to be 0 for all n outside some interval
[0, nx]. It follows that the earliest time instant at which a nonzero output value can appear
is n = 0, while the latest such time instant is n = nx + nh. In other words, the response
y[n] = (h ∗ x)[n] is guaranteed to be 0 for all n outside of the interval [0, nx + nh]. All the
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interesting input/output action of the system therefore takes place for n in this interval.
Outside of this interval we know that x[·] and y[·] are both 0. We can therefore take all the
signals of interest to have finite duration, being 0 outside of the interval [0, P− 1], where
P = nx + nh + 1. A DTFS representation of x[·] and y[·] on this interval, with this choice of
P, can then be used to carry out a frequency-domain analysis of the system. In particular,
the kth (scaled) Fourier coefficients of the input and output will be related as in Equation
(13.17).

� 13.2.6 The FFT

Implementing either the DTFS synthesis computation or the DTFS analysis computation,
as defined earlier, would seem to require on the order of P2 multiply/add operations:
we have to do P multiply/adds for each of P frequencies. This can quickly lead to pro-
hibitively expensive computations in large problems.

Happily, in 1965 Cooley and Tukey published a fast method for computing these DTFS
expressions (rediscovering a technique known to Gauss!). Their algorithm is termed the
Fast Fourier Transform or FFT, and takes on the order of P log P operations, which is a big
saving. (Note that the FFT is not a new kind of transform, despite its name! — it’s a fast
algorithm for computing a familiar transform, namely the DTFS.)

The essence of the idea is to recursively split the computation into a DTFS computation
involving the signal values at the even time instants and another DTFS computation in-
volving the signal values at the odd time instants. One then cleverly uses the nice algebraic
properties of the P complex exponentials involved in these computations to stitch things
back together and obtain the desired DTFS.

The FFT has become a (or maybe the) workhorse of practical numerical computation. Its
most common application is to computing samples of the DTFT of finite-duration signals,
as described in the previous subsection. It can also be applied, of course, to computing the
DTFS of a periodic signal.
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� Problems and Questions

1. Let x[·] be a signal that is periodic with period P = 12. For each of the following x[.],
give the corresponding spectral coefficients Ak for the discrete-time Fourier series
for x[·], for k in the range −6 ≤ k ≤ 6. (Hint: In most of the following cases, all you
need to do is express the signal as the sum of appropriate complex exponentials, by
inspection—this is much easier than cranking through the formal definition of the
spectral coefficient.)

(a) Determine Ak when x[0 : 11] = [0,0,1,0,0,0,0,0,0,0,0,0].

(b) Determine Ak when x[n] = 1 for all n.

(c) Determine Ak when x[n] = sin(r(2π/12)n) for the following two choices of r:
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i. r = 3; and
ii. r = 8.

(d) Determine Ak when x[n] = sin(3(2π/12)n + φ) where φ is some specified phase
offset.

2. Consider a lowpass LTI communication channel with input x[n], output y[n], and
frequency response H(Ω) given by

H(Ω) = e− j3Ω for 0 ≤ |Ω| < Ωm ,

= 0 for Ωm ≤ |Ω| ≤ π .

Here Ωm denotes the cutoff frequency of the channel; the output y[n] will contain no
frequency components in the range Ωm ≤ |Ω|≤ π. The different parts of this problem
involve different choices for Ωm.

(a) Picking Ωm = π/4, provide separate and properly labeled sketches of the mag-
nitude |H(Ω)| and phase ∠H(Ω) of the frequency response, for Ω in the interval
0 ≤ |Ω| ≤ π. (Sketch the phase only in the frequency ranges where |H(Ω)| > 0.)

(b) Suppose Ωm = π, so H(Ω) = e− j3Ω for all Ω in [−π,π], i.e., all frequency com-
ponents make it through the channel. For this case, y[n] can be expressed quite
simply in terms of x[.]; find the relevant expression.

(c) Suppose the input x[n] to this channel is a periodic “rectangular-wave” signal
with period 12. Specifically:

x[−1] = x[0] = x[1] = 1

and these values repeat every 12 steps, so

x[11] = x[12] = x[13] = 1

and more generally

x[12r− 1] = x[12r] = x[12r + 1]

for all integers r from −∞ to ∞. At all other times n, we have x[n] = 0. (You
might find it helpful to sketch this signal for yourself, e.g., for n ranging from
−2 to 13.)
Find explicit values for the Fourier coefficients in the discrete-time Fourier series
(DTFS) for this input x[n], i.e., the numbers Ak in the representation

x[n] =
5

∑
k=−6

AkejΩkn ,

where Ωk = k(2π/12). Recall that

Ak =
1

12 ∑
�n�

x[n]e− jΩkn ,
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where the summation is over any 12 consecutive values of n (as indicated by
writing �n�), so all you need to do is evaluate this expression for the particular
x[n] that we have.
Since x[n] is an even function of n, all the Ak should be purely real, so be sure your
expression for Ak makes clear that it is real. (Depending on how you proceed,
you may or may not find it helpful to note that e− j11(2π/12) = e j(2π/12).)
Check that your values for A0 and A−6 = A6 are correct, and be explicit about
how you are checking.

(d) Suppose the cutoff frequency of the channel is Ωm = π/4 (which is the case you
sketched in part (a), and the input is the x[n] specified in part (c). Compute the
values of all the nonzero Fourier coefficients of the channel output y[n], i.e., find
the values of the nonzero numbers Bk in the representation

y[n] =
5

∑
k=−6

BkejΩkn ,

where Ωk = k(2π/12). Don’t forget that H(Ω) = e− j3Ω in the passband of the
filter, 0 ≤ |Ω| < Ωm.

(e) Express the y[n] in part (d) as an explicit and real function of time n. (If you were
to sketch y[n], you would discover that it is a low-frequency approximation to
the y[n] that would have been obtained if Ωm = π.)

3. The figure below shows the real and imaginary parts of all non-zero Fourier se-
ries coefficients X[k] of a real periodic discrete-time signal x[n], for frequencies
Ωk ∈ [0,π]. Here Ωk = k(2π/N) for some fixed even integer N, as in all our anal-
ysis of the discrete-time Fourier series (DTFS), but the plots below only show the
range 0 ≤ k ≤ N/2.

✲

✻

Re(X[k])

Ωk

Im(X[k])

✲

✻

Ωk

① ① ①

①

1

1

0 π/3 2π/3

0 π/2

π

π

①0.5
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(a) Find all non-zero Fourier series coefficients of x[n] at Ωk in the interval [−π,0),
i.e., for −(N/2) ≤ k < 0. Give your answer in terms of careful and fully labeled
plots of the real and imaginary parts of X[k] (following the style of the figure
above).

(b) Find the period of x[n], i.e., the smallest integer T for which x[n + T] = x[n], for
all n.

(c) For the frequencies Ωk ∈ [0,π], find all non-zero Fourier series coefficients of the
signal x[n− 6] obtained by delaying x[n] by 6 samples.


