
MIT 6.02 DRAFT Lecture Notes

Last update: February 28, 2012

Comments, questions or bug reports?

Please contact hari at mit.edu

CHAPTER 6
Linear Block Codes:

Encoding and Syndrome Decoding

The previous chapter defined some properties of linear block codes and discussed two
examples of linear block codes (rectangular parity and the Hamming code), but the ap-
proaches presented for decoding them were specific to those codes. Here, we will describe
a general strategy for encoding and decoding linear block codes. The decoding procedure
we describe is syndrome decoding, which uses the syndrome bits introduced in the pre-
vious chapter. We will show how to perform syndrome decoding efficiently for any linear
block code, highlighting the primary reason why linear (block) codes are attractive: the
ability to decode them efficiently.

We also discuss how to use a linear block code that works over relatively small block
sizes to protect a packet (or message) made up of a much larger number of bits. Finally,
we discuss how to cope with burst error patterns, which are different from the BSC model
assumed thus far. A packet protected with one or more coded blocks needs a way for
the receiver to detect errors after the error correction steps have done their job, because all
errors may not be corrected. This task is done by an error detection code, which is generally
distinct from the correction code. For completeness, we describe the cyclic redundancy check
(CRC), a popular method for error detection.

� 6.1 Encoding Linear Block Codes

Recall that a linear block code takes k-bit message blocks and converts each such block
into n-bit coded blocks. The rate of the code is k/n. The conversion in a linear block code
involves only linear operations over the message bits to produce codewords. For concrete-
ness, let’s restrict ourselves to codes over F2, so all the linear operations are additive parity
computations.

If the code is in systematic form, each codeword consists of the k message bits
D1D2 . . . Dk followed by the n − k parity bits P1P2 . . . Pn−k, where each Pi is some linear
combination of the Di’s.

Because the transformation from message bits to codewords is linear, one can represent

63



64
CHAPTER 6. LINEAR BLOCK CODES:

ENCODING AND SYNDROME DECODING

each message-to-codeword transformation succinctly using matrix notation:

D · G = C, (6.1)

where D is a k× 1 matrix of message bits D1D2 . . . Dk, C is the n-bit codeword C1C2 . . . Cn,
G is the k× n generator matrix that completely characterizes the linear block code, and · is
the standard matrix multiplication operation. For a code over F2, each element of the three
matrices in the above equation is 0 or 1, and all additions are modulo 2.

If the code is in systematic form, C has the form D1D2 . . . DkP1P2 . . . Pn−k. Substituting
this form into Equation 6.1, we see that G is decomposed into a k × k identity matrix
“concatenated” horizontally with a k× (n− k) matrix of values that defines the code.

The encoding procedure for any linear block code is straightforward: given the genera-
tor matrix G, which completely characterizes the code, and a sequence of k message bits D,
use Equation 6.1 to produce the desired n-bit codeword. The straightforward way of doing
this matrix multiplication involves k multiplications and k−1 additions for each codeword
bit, but for a code in systematic form, the first k codeword bits are simply the message bits
themselves and can be produced with no work. Hence, we need O(k) operations for each
of n− k parity bits in C, giving an overall encoding complexity of O(nk) operations.

� 6.1.1 Examples

To illustrate Equation 6.1, let’s look at some examples. First, consider the simple linear
parity code, which is a (k + 1, k) code. What is G in this case? The equation for the parity
bit is P = D1 + D2 + . . . Dk, so the codeword is just D1D2 . . . DkP. Hence,

G = Ik×k|1T, (6.2)

where Ik×k is the k × k identity matrix and 1T is a k-bit column vector of all ones (the
superscript T refers to matrix transposition, i.e., make all the rows into columns and vice
versa). For example, when k = 3,

G =




1 0 0 1
0 1 0 1
0 0 1 1



 .

Now consider the rectangular parity code from the last chapter. Suppose it has r = 2
rows and c = 3 columns, so k = rc = 6. The number of parity bits = r + c = 5, so this
rectangular parity code is a (11,6,3) linear block code. If the data bits are D1D2D3D4D5D6
organized with the first three in the first row and the last three in the second row, the parity
equations are

P1 = D1 + D2 + D3

P2 = D4 + D5 + D6

P3 = D1 + D4

P4 = D2 + D5

P5 = D3 + D6



SECTION 6.2. MAXIMUM-LIKELIHOOD (ML) DECODING 65

Fitting these equations into Equation (6.1), we find that

G =





1 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 1 0 0
0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 1





.

G is a k× n (here, 6× 11) matrix; you can see the k× k identity matrix, followed by the
remaining k × (n− k) part (we have shown the two parts separated with a vertical line).
Each of the right-most n− k columns corresponds one-to-one with a parity bit, and there is
a “1” for each entry where the data bit of the row contributes to the corresponding parity
equation. This property makes it easy to write G given the parity equations; conversely,
given G for a code, it is easy to write the parity equations for the code.

Now consider the (7,4) Hamming code from the previous chapter. Using the parity
equations presented there, we leave it as an exercise to verify that for this code,

G =





1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1



 . (6.3)

As a last example, suppose the parity equations for a (6,3) linear block code are

P1 = D1 + D2

P2 = D2 + D3

P3 = D3 + D1

For this code,

G =




1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1



 .

We denote the k× (n− k) sub-matrix of G by A. I.e.,

G = Ik×k|A, (6.4)

where | represents the horizontal “stacking” (or concatenation) of two matrices with the
same number of rows.

� 6.2 Maximum-Likelihood (ML) Decoding

Given a binary symmetric channel with bit-flip probability ε, our goal is to develop a
maximum-likelihood (ML) decoder. For a linear block code, an ML decoder takes n re-
ceived bits as input and returns the most likely k-bit message among the 2k possible mes-
sages.



66
CHAPTER 6. LINEAR BLOCK CODES:

ENCODING AND SYNDROME DECODING

The simple way to implement an ML decoder is to enumerate all 2k valid codewords
(each n bits in length). Then, compare the received word, r, to each of these valid code-
words and find the one with smallest Hamming distance to r. If the BSC probability
ε < 1/2, then the codeword with smallest Hamming distance is the ML decoding. Note
that ε < 1/2 covers all cases of practical interest: if ε > 1/2, then one can simply swap all
zeroes and ones and do the decoding, for that would map to a BSC with bit-flip probability
1− ε < 1/2. If ε = 1/2, then each bit is as likely to be correct as wrong, and there is no
way to communicate at a non-zero rate. Fortunately, ε << 1/2 in all practically relevant
communication channels.

The goal of ML decoding is to maximize the quantity P(r|c); i.e., to find the codeword
c so that the probability that r was received given that c was sent is maximized. Consider
any codeword c̃. If r and c̃ differ in d bits (i.e., their Hamming distance is d), then P(r|c) =
εd(1− ε)N−d, where n is the length of the received word (and also the length of each valid
codeword). It’s more convenient to take the logarithm of this conditional probaility, also
termed the log-likelihood:1

log P(r|c̃) = d log ε + (N− d) log(1− ε) = d log
ε

1− ε
+ N log(1− ε). (6.5)

If ε < 1/2, which is the practical realm of operation, then ε
1−ε < 1 and the log term is

negative. As a result, maximizing the log likelihood boils down to minimizing d, because
the second term on the RHS of Eq. (6.5) is a constant.

ML decoding by comparing a received word, r, with all 2k possible valid n-bit code-
words does work, but has exponential time complexity. What we would like is something
a lot faster. Note that this “compare to all valid codewords” method does not take advan-
tage of the linearity of the code. By taking advantage of this property, we can make the
decoding a lot faster.

� 6.3 Syndrome Decoding of Linear Block Codes

Syndrome decoding is an efficient way to decode linear block codes. We will study it in
the context of decoding single-bit errors; specifically, providing the following semantics:

If the received word has 0 or 1 errors, then the decoder will return the correct
transmitted message.

If the received word has more than 0 or 1 errors, then the decoder may return the correct
message, but it may also not do so (i.e., we make no guarantees). It is not difficult to extend
the method described below to both provide ML decoding (i.e., to return the message
corresponding to the codeword with smallest Hamming distance to the received word),
and to handle block codes that can correct a greater number of errors.

The key idea is to take advantage of the linearity of the code. We first give an example,
then specify the method in general. Consider the (7,4) Hamming code whose generator
matrix G is given by Equation (6.3). From G, we can write out the parity equations in the

1The base of the logarithm doesn’t matter.



SECTION 6.3. SYNDROME DECODING OF LINEAR BLOCK CODES 67

same form as in the previous chapter:

P1 = D1 + D2 + D4

P2 = D1 + D3 + D4

P3 = D2 + D3 + D4 (6.6)
(6.7)

Because the arithmetic is over F2, we can rewrite these equations by moving the P’s to
the same side as the D’s (in modulo-2 arithmetic, there is no difference between a − and a
+ sign!):

D1 + D2 + D4 + P1 = 0
D1 + D3 + D4 + P2 = 0
D2 + D3 + D4 + P3 = 0 (6.8)

(6.9)

There are n − k such equations. One can express these equations, in matrix notation
using a parity check matrix, H, as follows:

H · [D1D2 . . . DkP1P2 . . . Pn−k]T = 0. (6.10)

H is the horizontal stacking, or concatenation, of two matrices: AT, where A is the sub-
matrix of the generator matrix of the code from Equation (6.4), and I(n−k)×(n−k), the identity
matrix. I.e.,

H = AT|I(n−k)×(n−k), (6.11)

where A is given by Equation (6.4).
H has the property that for any valid codeword c (which we represent as a 1×n matrix),

H · cT = 0. (6.12)

Hence, for any received word r without errors, H · rT = 0.
Now suppose a received word r has some errors in it. r may be written as c + e, where

c is some valid codeword and e is an error vector, represented (like c) as a 1× n matrix. For
such an r,

H · rT = H · (c + e)T = 0 + H · eT.

If r has at most one bit error, then e is made up of all zeroes and at most one “1”. In
this case, there are n + 1 possible values of H · eT; n of these correspond to exactly one bit
error, and one of these is a no-error case (e = 0), for which H · eT = 0. These n + 1 possible
vectors are precisely the syndromes introduced in the previous chapter: they signify what
happens under different error patterns.

Syndrome decoding pre-computes the syndrome corresponding to each error. As-
sume that the code is in systematic form, so each codeword is of the form
D1D2 . . . DkP1P2 . . . Pn−k. If e = 100 . . .0, then the syndrome H · eT is the result when the
first data bit, D1 is in error. In general, if element i of e is 1 and the other elements are
0, the resulting syndrome H · eT corresponds to the case when bit i in the codeword is



68
CHAPTER 6. LINEAR BLOCK CODES:

ENCODING AND SYNDROME DECODING

wrong. Under the assumption that there is at most one bit error, we care about storing the
syndromes when one of the first k elements of e is 1.

Given a received word, r, the decoder computes H · rT. If it is 0, then there are no
single-bit errors, and the receiver returns the first k bits of the received word as the decoded
message. If not, then it compares that (n− k)-bit value with each of the k stored syndromes.
If syndrome j matches, then it means that data bit j in the received word was in error, and
the decoder flips that bit and returns the first k bits of the received word as the most likely
message that was encoded and transmitted.

If H · rT is not all zeroes, and if it does not match any stored syndrome, then the decoder
concludes that either some parity bit was wrong, or that there were multiple errors. In this
case, it might simply return the first k bits of the received word as the message. This
method produces the ML decoding if a parity bit was wrong, but may not be the optimal
estimate when multiple errors occur. Because we are likely to use single-error correction
in cases when the probability of multiple bit errors is extremely low, we can often avoid
doing anything more sophisticated than just returning the first k bits of the received word
as the decoded message.

The preceding two paragraphs provide the essential steps behind syndrome decoding
for single bit errors, producing an ML estimate of the transmitted message in the case when
zero or one bit errors affect the codeword.

Correcting multiple errors. It is not hard to expand this syndrome decoding idea to the
multiple error case. Suppose we wish to correct all patterns of ≤ t errors. In this case,
we need to pre-compute more syndromes, corresponding to 0,1,2, . . . t bit errors. Each of
these should be stored by the decoder. There will be a total of

�
n
0

�
+

�
n
1

�
+

�
n
2

�
+ . . .

�
n
t

�

syndromes to pre-compute and store. If one of these syndromes matches, the decoder
knows exactly which bit error pattern produced the syndrome, and it flips those bits and
returns the first k bits of the codeword as the decoded message. This method requires
the decoder to make O(nt) syndrome comparisons, and each such comparison involved
comparing two (n− k)-bit strings with each other.

An example. A detailed example may be useful to understand the encoding and decod-
ing procedures. Consider the (7,4) Hamming code. The G for this linear block code is
specified in Equation (6.3). Given any k = 4-bit message m, the encoder produces an n = 7-
bit codeword, c by multiplying m · G. (m is a 1× k matrix, G is a k× n matrix, and c is a
1× n matrix.)

The parity check matrix, H, for this code is obtained by applying Equation (6.11):

H =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1



 . (6.13)

Suppose c is sent over the channel and is received by the decoder as r. For concreteness,



SECTION 6.4. PROTECTING LONGER MESSAGES WITH SEC CODES 69

suppose c = 1010001 and r = 1110001 (error in the second bit).
The decoder pre-computes syndromes corresponding to all possible single-bit errors.

(It actually needs to pre-compute only k of them, each corresponding to an error in one of
the first k bit positions of a codeword.) In our case, the k = 4 syndromes of interest are:

H · [1000000]T = [110]T

H · [0100000]T = [101]T

H · [0010000]T = [011]T

H · [0001000]T = [111]T

For completeness, the syndromes for a single-bit error in one of the parity bits are, not
surprisingly:

H · [0000100]T = [100]T

H · [0000010]T = [010]T

H · [0000001]T = [001]T

The decoder implements the following steps to correct single-bit errors:

1. Compute c� = H · rT (remembering to replace each value with its modulo-2 value).
In this example, c� = [101]T.

2. If c� is 0, then return the first k bits of r as the message. In this example c� is not 0.

3. If c� is not 0, then compare c� with the n pre-computed syndromes, H · ei, where
ei = [00 . . .1 . . .0] is a 1× n matrix with 1 in position i and 0 everywhere else.

4. If there is a match in the previous step for error vector e�, then bit position � in the
received word is in error. Flip that bit and return the first k elements of r (note that
we need to perform this check only for the first k error vectors because only one of
those may need to be flipped, which is why it is sufficient to only store k single-error
syndromes and not n.

In this example, the syndrome for H · [0100000]T = [101]T, which matches c� = H · rT.
Hence, the decoder flips the second bit in the received word and returns the first
k = 4 bits of r as the ML decoding. In this example, the returned estimate of the
message is [1010].

5. If there is no match, return the first k bits of r. Doing so is not necessarily ML de-
coding when multiple bit errors occur, but if the bit error probability is small, then it
is a very good approximation. It is unlikely that doing full-fledged ML decoding in
this case is worth the effort in terms of reduced bit error rate of a packet made up of
many such coded blocks.

� 6.4 Protecting Longer Messages with SEC Codes

SEC codes are a good building block, but they correct at most one error in a block of n
coded bits. As messages get longer, the solution, of course, is to break up a longer message



70
CHAPTER 6. LINEAR BLOCK CODES:

ENCODING AND SYNDROME DECODING

Figure 6-1: Dividing a long message into multiple SEC-protected blocks of k bits each, adding parity bits
to each constituent block. The red vertical rectangles refer to bit errors.

into smaller blocks of k bits each, and to protect each one with its own SEC code. The result
might look as shown in Figure 6-1. In addition, one would introduce an error detection
code (like a CRC) at the end of the packet, as described in Section 6.6.

� 6.5 Coping with Burst Errors

Over many channels, errors occur in bursts and the BSC error model is invalid. For ex-
ample, wireless channels suffer from interference from other transmitters and from fading,
caused mainly by multi-path propagation when a given signal arrives at the receiver from
multiple paths and interferes in complex ways because the different copies of the signal
experience different degrees of attenuation and different delays. Another reason for fad-
ing is the presence of obstacles on the path between sender and receiver; such fading is
called shadow fading.

The behavior of a fading channel is complicated and beyond our current scope of dis-
cussion, but the impact of fading on communication is that the random process describing
the bit error probability is no longer independent and identically distributed from one bit
to another. The BSC model needs to be replaced with a more complicated one in which
errors may occur in bursts. Many such theoretical models guided by empirical data exist,
but we won’t go into them here. Our goal is to understand how to develop error correction
mechanisms when errors occur in bursts.

But what do we mean by a “burst”? The simplest model is to model the channel as
having two states, a “good” state and a “bad” state. In the “good” state, the bit error
probability is pg and in the “bad” state, it is pb > pg. Once in the good state, the channel
has some probability of remaining there (generally > 1/2) and some probability of moving
into the “bad” state, and vice versa. It should be easy to see that this simple model has
the property that the probability of a bit error depends on whether the previous bit (or
previous few bits) are in error or not. The reason is that the odds of being in a “good” state
are high if the previous few bits have been correct.

At first sight, it might seem like the block codes that correct one (or a small number of)
bit errors are poorly suited for a channel experiencing burst errors. The reason is shown in
Figure 6-2 (left), where each block of the message is protected by its SEC parity bits. The



SECTION 6.6. ERROR DETECTION 71

Figure 6-2: Interleaving can help recover from burst errors: code each block row-wise with an SEC, but
transmit them in interleaved fashion in columnar order. As long as a set of burst errors corrupts some set
of kth bits, the receiver can recover from all the errors in the burst.

different blocks are shown as different rows. When a burst error occurs, multiple bits in an
SEC block are corrupted, and the SEC can’t recover from them.

Interleaving is a commonly used technique to recover from burst errors on a channel
even when the individual blocks are protected with a code that, on the face of it, is not
suited for burst errors. The idea is simple: code the blocks as before, but transmit them in
a “columnar” fashion, as shown in Figure 6-2 (right). That is, send the first bit of block 1,
then the first bit of block 2, and so on until all the first bits of each block in a set of some
predefined size are sent. Then, send the second bits of each block in sequence, then the
third bits, and so on.

What happens on a burst error? Chances are that it corrupts a set of “first” bits, or a
set of “second” bits, or a set of “third” bits, etc., because those are the bits sent in order
on the channel. As long as only a set of kth bits are corrupted, the receiver can correct all
the errors. The reason is that each coded block will now have at most one error. Thus,
block codes that correct a small number of bit errors per block are still a useful primitive
to correct burst errors, when used in concert with interleaving.

� 6.6 Error Detection

This section is optional reading and is not required for 6.02 in Spring 2012.
The reason why error detection is important is that no practical error correction schemes

can perfectly correct all errors in a message. For example, any reasonable error correction
scheme that can correct all patterns of t or fewer errors will have some error pattern of t or
more errors that cannot be corrected. Our goal is not to eliminate all errors, but to reduce
the bit error rate to a low enough value that the occasional corrupted coded message is
not a problem: the receiver can just discard such messages and perhaps request a retrans-
mission from the sender (we will study such retransmission protocols later in the term).
To decide whether to keep or discard a message, the receiver needs a way to detect any
errors that might remain after the error correction and decoding schemes have done their
job: this task is done by an error detection scheme.

An error detection scheme works as follows. The sender takes the message and pro-
duces a compact hash or digest of the message; i.e., a function that takes the message as in-
put and produces a unique bit-string. The idea is that commonly occurring corruptions of
the message will cause the hash to be different from the correct value. The sender includes



72
CHAPTER 6. LINEAR BLOCK CODES:

ENCODING AND SYNDROME DECODING

the hash with the message, and then passes that over to the error correcting mechanisms,
which code the message. The receiver gets the coded bits, runs the error correction decod-
ing steps, and then obtains the presumptive set of original message bits and the hash. The
receiver computes the same hash over the presumptive message bits and compares the re-
sult with the presumptive hash it has decoded. If the results disagree, then clearly there has
been some unrecoverable error, and the message is discarded. If the results agree, then the
receiver believes the message to be correct. Note that if the results agree, the receiver can
only believe the message to be correct; it is certainly possible (though, for good detection
schemes, unlikely) for two different message bit sequences to have the same hash.

The design of an error detection method depends on the errors we anticipate. If the
errors are adversarial in nature, e.g., from a malicious party who can change the bits as
they are sent over the channel, then the hash function must guard against as many of the
enormous number of different error patterns that might occur. This task requires cryp-
tographic protection, and is done in practice using schemes like SHA-1, the secure hash
algorithm. We won’t study these here, focusing instead on non-malicious, random errors
introduced when bits are sent over communication channels. The error detection hash
functions in this case are typically called checksums: they protect against certain random
forms of bit errors, but are by no means the method to use when communicating over an
insecure channel.

The most common packet-level error detection method used today is the Cyclic Redun-
dancy Check (CRC).2 A CRC is an example of a block code, but it can operate on blocks of
any size. Given a message block of size k bits, it produces a compact digest of size r bits,
where r is a constant (typically between 8 and 32 bits in real implementations). Together,
the k + r = n bits constitute a code word. Every valid code word has a certain minimum
Hamming distance from every other valid code word to aid in error detection.

A CRC is an example of a polynomial code as well as an example of a cyclic code. The
idea in a polynomial code is to represent every code word w = wn−1wn−2wn−2 . . . w0 as a
polynomial of degree n− 1. That is, we write

w(x) =
n−1

∑
i=0

wixi. (6.14)

For example, the code word 11000101 may be represented as the polynomial 1 + x2 +
x6 + x7, plugging the bits into Eq.(6.14) and reading out the bits from right to left. We use
the term code polynomial to refer to the polynomial corresponding to a code word.

The key idea in a CRC (and, indeed, in any cyclic code) is to ensure that every valid code
polynomial is a multiple of a generator polynomial, g(x). We will look at the properties of good
generator polynomials in a bit, but for now let’s look at some properties of codes built with
this property. The key idea is that we’re going to take a message polynomial and divide
it by the generator polynomial; the (coefficients of) the remainder polynomial from the
division will correspond to the hash (i.e., the bits of the checksum).

All arithmetic in our CRC will be done in F2. The normal rules of polynomial addition,

2Sometimes, the literature uses “checksums” to mean something different from a “CRC”, using checksums
for methods that involve the addition of groups of bits to produce the result, and CRCs for methods that
involve polynomial division. We use the term “checksum” to include both kinds of functions, which are both
applicable to random errors and not to insecure channels (unlike secure hash functions).



SECTION 6.6. ERROR DETECTION 73

subtraction, multiplication, and division apply, except that all coefficients are either 0 or 1
and the coefficients add and multiply using the F2 rules. In particular, note that all minus
signs can be replaced with plus signs, making life quite convenient.

� 6.6.1 Encoding Step

The CRC encoding step of producing the digest is simple. Given a message, construct
the message polynomial m(x) using the same method as Eq.(6.14). Then, our goal is to
construct the code polynomial, w(x) by combining m(x) and g(x) so that g(x) divides w(x)
(i.e., w(x) is a multiple of g(x)).

First, let us multiply m(x) by xn−k. The reason we do this multiplication is to shift the
message left by n− k bits, so we can add the redundant check bits (n− k of them) so that
the code word is in systematic form. It should be easy to verify that this multiplication
produces a polynomial whose coefficients correspond to original message bits followed by
all zeroes (for the check bits we’re going to add in below).

Then, let’s divide xn−km(x) by g(x). If the remainder from the polynomial division is 0,
then we have a valid codeword. Otherwise, we have a remainder. We know that if we sub-
tract this remainder from the polynomial xn−km(x), we will obtain a new polynomial that
will be a multiple of g(x). Remembering that we are in F2, we can replace the subtraction
with an addition, getting:

w(x) = xn−km(x) + xn−km(x) mod g(x), (6.15)

where the notation a(x) mod b(x) stands for the remainder when a(x) is divided by b(x).
The encoder is now straightforward to define. Take the message, construct the message

polynomial, multiply by xn−k, and then divide that by g(x). The remainder forms the check
bits, acting as the digest for the entire message. Send these bits appended to the message.

� 6.6.2 Decoding Step

The decoding step is essentially identical to the encoding step, one of the advantages of
using a CRC. Separate each code word received into the message and remainder portions,
and verify whether the remainder calculated from the message matches the bits sent to-
gether with the message. A mismatch guarantees that an error has occurred; a match
suggests a reasonable likelihood of the message being correct, as long as a suitable generator
polynomial is used.

� 6.6.3 Mechanics of division

There are several efficient ways to implement the division and remaindering operations
needed in a CRC computation. The schemes used in practice essentially mimic the “long
division” strategies one learns in elementary school. Figure 6-3 shows an example to re-
fresh your memory!

� 6.6.4 Good Generator Polynomials

So how should one pick good generator polynomials? There is no magic prescription
here, but ny observing what commonly occuring error patterns do to the received code



74
CHAPTER 6. LINEAR BLOCK CODES:

ENCODING AND SYNDROME DECODING

Figure 6-3: CRC computations using “long division”.

words, we can form some guidelines. To develop suitable properties for g(x), first observe
that if the receiver gets a bit sequence, we can think of it as the code word sent added
to a sequence of zero or more errors. That is, take the bits obtained by the receiver and
construct a received polynomial, r(x), from it. We can think of r(x) as being the sum of
w(x), which is what the sender sent (the receiver doesn’t know what the real w was) and an
error polynomial, e(x). Figure 6-4 shows an example of a message with two bit errors and the
corresponding error polynomial. Here’s the key point: If r(x) = w(x) + e(x) is not a multiple
of g(x), then the receiver is guaranteed to detect the error. Because w(x) is constructed as a
multiple of g(x), this statement is the same as saying that if e(x) is not a multiple of g(x), the
receiver is guaranteed to detect the error. On the other hand, if r(x), and therefore e(x), is a
multiple of g(x), then we either have no errors, or we have an error that we cannot detect
(i.e., an erroneous reception that we falsely identify as correct). Our goal is to ensure that
this situation does not happen for commonly occurring error patterns.

1. First, note that for single error patterns, e(x) = xi for some i. That means we must
ensure that g(x) has at least two terms.

2. Suppose we want to be able to detect all error patterns with two errors. That error
pattern may be written as xi + xj = xi(1 + xj−i), for some i and j > i. If g(x) does not
divide this term, then the resulting CRC can detect all double errors.

3. Now suppose we want to detect all odd numbers of errors. If (1 + x) is a factor of



SECTION 6.6. ERROR DETECTION 75

Figure 6-4: Error polynomial example with two bit errors; the polynomial has two non-zero terms corre-
sponding to the locations where the errors have occurred.

g(x), then g(x) must have an even number of terms. The reason is that any polynomial
with coefficients in F2 of the form (1 + x)h(x) must evaluate to 0 when we set x to 1. If
we expand (1 + x)h(x), if the answer must be 0 when x = 1, the expansion must have
an even number of terms. Therefore, if we make 1 + x a factor of g(x), the resulting
CRC will be able to detect all error patterns with an odd number of errors. Note, however,
that the converse statement is not true: a CRC may be able to detect an odd number
of errors even when its g(x) is not a multiple of (1 + x). But all CRCs used in practice
do have (1 + x) as a factor because its the simplest way to achieve this goal.

4. Another guideline used by some CRC schemes in practice is the ability to detect
burst errors. Let us define a burst error pattern of length b as a sequence of bits
1εb−2εb−3 . . . ε11: that is, the number of bits is b, the first and last bits are both 1,
and the bits εi in the middle could be either 0 or 1. The minimum burst length is 2,
corresponding to the pattern “11”.

Suppose we would like our CRC to detect all such error patterns, where e(x) =
xs(1 · xb−1 + ∑b−2

i=1 εixi + 1). This polynomial represents a burst error pattern of size b
starting s bits to the left from the end of the packet. If we pick g(x) to be a polynomial
of degree b, and if g(x) does not have x as a factor, then any error pattern of length
≤ b is guaranteed to be detected, because g(x) will not divide a polynomial of degree
smaller than its own. Moreover, there is exactly one error pattern of length b + 1—
corresponding to the case when the burst error pattern matches the coefficients of
g(x) itself—that will not be detected. All other error patterns of length b + 1 will be
detected by this CRC.

If fact, such a CRC is quite good at detecting longer burst errors as well, though it
cannot detect all of them.

CRCs are cyclic codes, which have the property that if c is a code word, then any cyclic
shift (rotation) of c is another valid code word. Hence, referring to Eq.(6.14), we find that



76
CHAPTER 6. LINEAR BLOCK CODES:

ENCODING AND SYNDROME DECODING

Figure 6-5: Commonly used CRC generator polynomials, g(x). From Wikipedia.

one can represent the polynomial corresponding to one cyclic left shift of w as

w(1)(x) = wn−1 + w0x + w1x2 + . . . wn−2xn−1 (6.16)
= xw(x) + (1 + xn)wn−1 (6.17)

Now, because w(1)(x) must also be a valid code word, it must be a multiple of g(x), which
means that g(x) must divide 1 + xn. Note that 1 + xn corresponds to a double error pattern;
what this observation implies is that the CRC scheme using cyclic code polynomials can
detect the errors we want to detect (such as all double bit errors) as long as g(x) is picked
so that the smallest n for which 1 + xn is a multiple of g(x) is quite large. For example,
in practice, a common 16-bit CRC has a g(x) for which the smallest such value of n is
215 − 1 = 32767, which means that it’s quite effective for all messages of length smaller
than that.

� 6.6.5 CRCs in practice

CRCs are used in essentially all communication systems. The table in Figure 6-5, culled
from Wikipedia, has a list of common CRCs and practical systems in which they are used.
You can see that they all have an even number of terms, and verify (if you wish) that 1 + x
divides most of them.

� 6.7 Summary

This chapter described syndrome decoding of linear block codes, described how to divide
a packet into one or more blocks and protect each block using an error correction code, and
described how interleaving can handle some burst error patterns. We then showed how
error detection using CRCs can be done.

The next two chapters describe the encoding and decoding of convolutional codes, a
different kind of error correction code that does not require fixed-length blocks.


