Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Please send information about errors or omissions to hari; questions are best asked on piazza.

1. (a) From the definition of the frequency response, $H(\Omega)=\sum_{m=\infty}^{\infty} h[m] e^{-j \Omega m}=1+2 e^{-j \Omega}+$ $e^{-2 j \Omega}$.
(b) Plug in the given Ω values into the expression for $H(\Omega)$, to get $H(0)=1, H(\pi / 2)=$ $1-2 j-1=-2 j, H(\pi)=1-2+1=0$.
(c) Let $e^{-j \Omega}=z$, so we want $1+2 z+z^{2}=0$, which gives us $(z+1)^{2}=0$, or $z=-1$. Hence, $e^{-j \Omega}=-1$, or $\Omega=\pi$.
2. (a) We'll use the fact that if the input to an LTI with frequency response $H(\Omega)$ is a complex exponential $x[n]=e^{j \Omega n}$, then the output $y[n]=H(\Omega) x[n]=H(\Omega) e^{j \Omega n}$. Plugging that into the given equation or $y[n]$, we get $H(z)=1+\alpha z+\beta z^{2}+\gamma z^{3}$, denoting $e^{-j \Omega}$ by z for convenience (on both sides of the equation).
Let's now expand the given expression, $H(\Omega)=1-0.5 e^{-j 2 \Omega} \cos \Omega$ in terms of complex exponentials. The idea is we can then match the coefficients to obtain the values of α, β, and γ. Expanding the $\cos (\Omega)$ term into complex exponential sums and multiplying, we get the expression $H(z)=1-0.25 z-0.25 z^{3}$. Matching coefficients, we conclude that $\alpha=-0.25, \beta=0, \gamma=-0.25$.
(b) For a series (cascade) of LTI systems, the frequency response is the product of the frequency responses of the individual LTI systems. So, the frequency response of this cascade is $G\left(e^{j \Omega}\right) H\left(e^{j \Omega}\right)$. For $w[n]$ to be equal to $x[n]$ for all n, the unit sample response of the cascade must be $\delta[n]$. The frequency response of the cascade is related the unit sample response by $G\left(e^{j \Omega}\right) H\left(e^{j \Omega}\right)=\sum_{m=0}^{m=\infty} \delta[m] e^{-j \Omega m}=1$. Since $G\left(e^{j \Omega}\right) H\left(e^{j \Omega}\right)=1$, and $H\left(e^{j \Omega}\right)$ is never zero for $-\pi \leq \Omega \leq \pi$, then $G\left(e^{j \Omega}\right)=\frac{1}{H\left(e^{j \Omega}\right)}$. Hence,

$$
G\left(e^{j \Omega}\right)=\frac{1}{\left.1-0.5 e^{-j 2 \Omega} \cos \Omega\right)}
$$

(c) First, observe that we can rewrite the given $x[n]$ as

$$
x[n]=e^{j 0 n}+0.5 e^{j \pi n} .
$$

Then using the meaning of frequency response, and applying superposition, we can write

$$
y[n]=0 e^{j 0 n}+A e^{j \pi n}=H\left(e^{j 0}\right) e^{j 0 n}+H\left(e^{j \pi n}\right) 0.5 e^{j \pi n} .
$$

Matching terms, it then follows that $H\left(e^{j 0}\right)=0$ and $A=0.5 H\left(e^{j \pi n}\right)$. For this difference equation, the frequency response for an arbitrary Ω is given by

$$
H\left(e^{j \Omega}\right)=1+\alpha e^{-j \Omega}+\beta e^{-j 2 \Omega}+\gamma e^{-j 3 \Omega}
$$

so for the special case of $\Omega=0$,

$$
H\left(e^{j 0}\right)=1+\alpha+\beta+\gamma .
$$

Given that $H\left(e^{j 0}\right)=0$, and $\alpha=\gamma=1$, it must be true that $\beta=-3$. Then to determine A, consider that

$$
H\left(e^{j \pi n}\right)=1+\alpha e^{-j \pi}+\beta e^{-j 2 \pi}+\gamma e^{-j 3 \pi}=1-\alpha+\beta-\gamma=1-1-3-1=-4 .
$$

Therefore, $A=0.5 H\left(e^{j \pi n}\right)=0.5(-4)=-2$.
3. (a) From the definition of the frequency response, $H(\Omega)=\sum_{m=0}^{\infty} h[m] e^{-j \Omega m}=h[0] e^{-j \Omega 0}+$ $h[1] e^{-j \Omega}+h[2] e^{-j 2 \Omega}+h[3] e^{-j 3 \Omega}$. Plugging in values for $h[i]$, the frequency response is $H(\Omega)=a+b e^{-j \Omega}+b e^{-j 2 \Omega}+a e^{-j 3 \Omega}$.
(b) Note that $x[n]=(-1)^{n}$ can be written as $x[n]=e^{-j \pi n}$. This input corresponds to a complex exponential with angular frequency $\Omega=\pi$. We know that for everlasting complex exponential inputs, $y[n]=H(\Omega) e^{j \Omega n}$; therefore we know that $y[n]=H(\pi) e^{j \pi n}$. Evaluating $H(\Omega), y[n]$ is given by $(a-b+b-a)$, or $y[n]=0$ for all n.
(c) The definition of convolution follows as $y[n]=\sum_{m=0}^{\infty} h[m] x[n-m]$. We find $y[5]$ by solving $\sum_{m=0}^{\infty} h[m] x[5-m]$; this gives $-a+b-b+a=0$. Similarly, $y[6]=\sum_{m=0}^{\infty} h[m] x[6-m]$, giving $a-b+b-a=0$. Moreover, since these calculations are representative of what one would get for odd and even n respectively, $y[n]=0$ for all n.
(d) Decompose into cosines. Dividing both sides by $e^{-j 3 \Omega 2}$ we know that $G(\Omega)=\frac{1}{e^{-j 3 \Omega / 2}} H(\Omega)$. Dividing out $e^{-j 3 \Omega / 2}$ from each term in $H(\Omega)$, we get $a e^{j 3 \Omega / 2}+b e^{j \Omega / 2}+b e^{-j \Omega / 2}+a e^{j 3 \Omega / 2}$. Converting this expression to cosines, we find that

$$
G(\Omega)=2\left[a \cos \left(\frac{3 \Omega}{2}\right)+b \cos \left(\frac{\Omega}{2}\right)\right] .
$$

(e) By superposition, the response is the sum of the responses to $(-1)^{n}$ and to $\cos \left(\frac{\pi}{2} n+\theta_{0}\right)$. But we have already seen in parts (b) and (c) that the response to $(-1)^{n}$ is 0 for all n. So what remains is to find the response to $\cos \left(\pi n+\theta_{0}\right)$. This response is simply

$$
y[n]]=|H(\pi / 2)| \cos \left(\frac{\pi}{2} n+\theta_{0}+\angle H(\pi / 2)\right) .
$$

Note from the form of $H(\Omega)$ in part (d) that

$$
\begin{array}{rlr}
H(\pi / 2) & = & G(\pi / 2) e^{-j 3 \pi / 4}=2\left[a \cos \left(\frac{3 \pi}{4}\right)+b \cos \left(\frac{\pi}{4}\right)\right] \\
& = & \sqrt{2}(b-a) e^{-j 3 \pi / 4}
\end{array}
$$

Since $b>a$, it follows that $|H(\pi / 2)|=\sqrt{2}(b-a)$ and $\angle H(\pi / 2)=-3 \pi / 4$. Hence,

$$
y[n]=\sqrt{2}(b-a) \cos \left(\frac{\pi}{2} n+\theta_{0}-\frac{3 \pi}{4}\right) .
$$

As a check, consider the case $\theta_{0}=0$, so the input of interest is $\cos (\pi n)$, which alternates between +1 and -1 at even values of n, and is 0 at all odd values of n. Convolving this sequence with the given unit sample response $h[n]$ shows that $y[0]=a-b$. And this answer matches what we get on evaluating the above general expression for $y[n]$ at $n=0$ and $\theta_{0}=0$.

Hari Balakrishnan

4. (a) There are two key things to notice about this frequency response function. First off, it has no zeros. Second, looking at the denmoinator, when $\Omega \approx \pm \frac{\pi}{2}$ the denominator becomes very small, causing $H_{A}\left(e^{j \Omega}\right)$ to become large. The only graph that satisfies these two criteria is H_{I}.
(b) We can solve this problem by setting $x[n]=e^{j \Omega}$ and knowing that the frequency response is a complex exponential with the same frequency. We get

$$
H(\Omega) e^{j \Omega n}+a_{1} H(\Omega) e^{j \Omega(n-1)}+a_{2} H(\Omega) e^{j \Omega(n-2)}=e^{j \Omega n}
$$

Dividing both sides by $e^{j \Omega n}$ and solving for $H(\Omega)$, we get

$$
H(\Omega)=\frac{1}{1+a_{1} e^{-j \Omega}+a_{2} e^{-j 2 \Omega}} .
$$

It is easier to expand $H_{A}(\Omega)$ than to factor $H(\Omega)$, so we factor $H_{A}(\Omega)$ to find the denominator is $1+0.95 e^{j\left(\Omega+\frac{\pi}{2}\right)}+0.95 e^{j\left(\Omega-\frac{\pi}{2}\right)}+0.95 e^{j\left(\Omega-\frac{\pi}{2}\right)} 0.95 e^{j\left(\Omega+\frac{\pi}{2}\right)}$. The middle two terms cancel each other out (because of the $\frac{p i}{2}$ phase shifts) and the last term is equal to $0.9025 e^{-j 2 \Omega}$. Matching coefficients with $H(\Omega)$, we find that $a_{1}=0$ and $a_{2}=\left(\frac{19}{20}\right)^{2}=$ 0.9025 .
5. (a) We can make the following observations:

$$
\begin{aligned}
\max _{n}\left(\cos \frac{\pi}{6} n\right) & =1, n=0,12, \ldots \\
\max _{n}\left(\cos \frac{5 \pi}{6} n\right) & =1, n=0,12, \ldots \\
\max _{n}\left(3(-1)^{n}\right) & =1, n \text { even. }
\end{aligned}
$$

Hence, the maximum value is 7 , and the smallest positive n at which the maximum occurs is $n=12$.
(b) The frequency response at $\Omega=\frac{\pi}{6}$ and at $\Omega=\frac{5 \pi}{6}$ must be zero, which means that the only possibility is $H_{I I I}$.

$$
y[n]=H(0) \cdot 2 \cdot(1)^{n}+H(\pi) \cdot 3 \cdot(-1)^{n}=4 \cdot 2 \cdot(1)^{n}+4 \cdot 3 \cdot(-1)^{n} .
$$

The numerical value of M is 4 .
6. (a) The first equation tells us that the DC component of the frequency response, i.e., $H(0)$ is 5 . The second and third equations tell is that $H(\pi / 2)$ and $H(-\pi / 2)$ are both 0 .
(b) $H_{I I}$ is the frequency response that best describes the above information, as it is the only curve that meets the constraints of part (a). The numerical value of M must be 5 .
(c) $y[n] / x[n]$ is the frequency response $H(\Omega)$. Because the input is an everlasting exponential with frequency $\Omega=\frac{\pi}{6}, y[n] / x[n]$ is simply $H\left(\frac{\pi}{6}\right)=h[0]+h[2] e^{-j \pi / 3}=3.75-j(5 \sqrt{3} / 4)$.

