()

NI

DIGITAL

f (freq. domain)

i I
LA

COMMUNICATION
SYSTEMS

Ll | |

6.02 Spring 2012
Lecture #2

* Huffman codes wrap-up: Properties & limitations
» Adaptive variable-length codes: LZW

bits Source Transmit/Receive Source | | bits
N Coding (or Store/Retrieve) Decoding ouT

Example from Last Lecture

choice; ;i log,(1/py) logf{[lj;p :) %21;; E)lz):;::d
“A” 1/3 1.58 bits | 0.528 bits 10 0.667 bits

“B” 1/2 1 bit 0.5 bits (o] 0.5 bits
“c” 1/12 3.58 bits | 0.299 bits 110 0.25 bits
“D” 1/12 3.58 bits | 0.299 bits 111 0.25 bits
1.626 bits 1.667 bits

Entropy is 1.626 bits/symbol, expected length of Huffman
encoding is 1.667 bits/symbol.

How do we do better? 16 Pairs: 1.646 bits/sym
64 Triples: 1.637 bits/sym
256 Quads: 1.633 bits/sym

Halftime Quiz

* Write your name and recitation time on a sheet of paper.
* Write the question number and your answer on it.
« Turn the paper in at the end of lecture to me.

1. Which of these (A, B, C) is a valid Huffman code tree?
A. o) B. Q C. -

Y, p=0.3 /

X @ N
p=04 p=0.3 p=0.3

@ 0 J
W, p=0.1 Z, p=0.2 W, p=0.1 Z, p=0.3
Answer: B

2. What is the expected length of the code in tree C above?
Answer: 0.4*1 + 0.2*2 + 0.1*3 + 0.3*3 = 2.0 bits

2/14/12

How to Send Shakespeare’s Sonnets?!

B Jfakypearey,

& XVIIL

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,

Shall I compare thee to a summer's day?

Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
His tender heir might bear his memory: And summer's lease hath all too short a date:
But thou contracted to thine own bright eyes, Sometime too hot the eye of heaven shines,
Feed'st thy light's flame with self-substantial fuel, And often is his gold complexion dimmed,
Making a famine where abundance lies, And every fair from fair sometime declines,

Thy self thy foe, to thy sweet self too cruel: By chance, or nature's changing course untrimmed:
Thou that art now the world's fresh ornament, But thy eternal summer shall not fade,

And only herald to the gaudy spring, Nor lose possession of that fair thou ow'st,
Within thine own bud buriest thy content, Nor shall death brag thou wander'st in his shade,
And, tender churl, mak'st waste in niggarding: When in eternal lines to time thou grow'st,

Pity the world, or else this glutton be, So long as men can breathe, or eyes can see,

To eat the world's due, by the grave and thee. So long lives this, and this gives life to thee.

What is the Entropy of English?

100

1000

E T [alo N [s TR H o[t ul o [m[F v C I 2 A O O
Frequencyl 1202 | .10 | 6.12 | 788 | 701 | 655 | 626 | 60z | 552 | 432 | 8 | 2e8 | 271 | 2e1 | 230 [2ri | 205 | 205 | 182 | ias | 141 | 069 | o7 |01 |10 | 007 |

Assuming IID letter distribution,
entropy works out to 4.177 bits per letter

http://www.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html

In fact, English text has lots of context

* What’s the next letter in the snippet
Nothing can be said to be certain, except death and ta?

* But X has a very low occurrence probability
(0.0017) in English words

— Letters are not independently distributed!

* Shannon and others have found that the entropy of
English text is a lot lower than 4.177
— Shannon estimated 0.6-1.3 bits/letter using human expts
— More recent estimates: 1-1.5 bits/letter

Can we do adaptive variable-length encoding?

LZW: An Adaptive Variable-length Code

* Algorithm first developed by Ziv and 0 0
Lempel (LZ88, LZ78), later improved by ; -
Welch.
3 3| | First 256 table
4 4| | entries hold all
 As message is processed, encoder o]]| the ‘me’[byte
. “ . ” 252 252 strings (eg,
builds a “string table” that maps sea el | ASCII codes).
symbol sequences to an N-bit fixed- I
length code. Table size = 2N
255 255 | J
» Transmit table indices, usually shorter 256 b
than the corresponding string — 257
. Remaining
compression! 258 entries are
* Note: String table can be reconstructed zzz filled with
by the decoder using information in the [sequences from
" 261 the message.
encoded stream — thf: table, while) 262 When full,
central to the encoding and decoding reinitialize
process, is never transmitted)! 21 | table...

2/14/12

LZW Encoding

STRING = get input symbol
WHILE there are still input symbols DO
SYMBOL = get input symbol
IF STRING + SYMBOL is in the STRINGTABLE THEN
STRING = STRING + SYMBOL
ELSE
output the code for STRING
add STRING + SYMBOL to STRINGTABLE
STRING = SYMBOL
END
END

output the code for STRING

1. Accumulate message bytes in S as long as S appears in table.
2. When S+b isn’t in table: send code for S, add S+b to table.
3. Reinitialize S with b, back to step 1.

From http://marknelson.us/1989/10/01/Izw-data-compression/

Example: Encode “abbbabbbab...”

1. Read a; string = a
2. Read b; ab not in table

256 ab output 97, add ab to table, string =b
257 bb 3. Read b; bb not in table
258| bba output 98, add bb to table, string = b

259| abb 4. Read b; bb in table, string = bb

5. Read a; bba not in table
260 | bbab ’
a output 257, add bba to table, string = a

Encoder Notes

* The encoder algorithm is greedy — it’s designed to find the
longest possible match in the string table before it makes a
transmission.

* The string table is filled with sequences actually found in the
message stream. No encodings are wasted on sequences not
actually found in the input data.

* Note that in this example the amount of compression
increases as the encoding progresses, i.e., more input bytes
are consumed between transmissions.

« Eventually the table will fill and then be reinitialized,
recycling the N-bit codes for new sequences. So the encoder
will eventually adapt to changes in the probabilities of the
symbols or symbol sequences.

¢ Remarkably, LZW actually achieves entropy for long
messages!

261 6. Read b, ab in table, string = ab
262 7. Read b, abb not in table
output 256, add abb to table, string =b
8. Read b, bb in table, string = bb
9. Read a, bba in table, string = bba
10. Read b, bbab not in table
output 258, add bbab to table, string = b
LZW Decoding, 15t Attempt
(somewhat wrong!)
Read CODE

STRING = TABLE[CODE] // translation table @ decoder

WHILE there are still codes to receive DO
Read CODE
ENTRY = TABLE[CODE]

output ENTRY
add STRING+ENTRY[0] to the translation table
STRING = ENTRY

END

Easy: use table lookup to convert code to message string
Less easy: build table that’s identical to that in encoder

2/14/12

Example: Decode 97, 97, 257, 256, 258

256
257
258
259
260
261
262

ab

bb

bba

abb

Read 97;

output a; string = a

Read 98; entry = b

output b; add ab to table; string = b

Read 257; entry = bb

output bb; add bb to table; string = bb
Read 256; entry = ab

output ab; add bba to table; string = ab
Read 258; entry = bba

output bba; add abb to table; string = bba

LZW Decoding

Read CODE
STRING = TABLE[CODE] // translation table

WHILE there are still codes to receive DO
Read CODE from encoder
IF CODE is not in the translation table THEN
ENTRY = STRING + STRING[O]
ELSE
ENTRY = get translation of CODE
END
output ENTRY
add STRING+ENTRY[0] to the translation table
STRING = ENTRY
END

Example: abababa

Easy: use table lookup to convert code to message string
Less easy: build table that’s identical to that in encoder

2/14/12

