
2/14/12

1

6.02 Spring 2012 Lecture 2, Slide #1

6.02 Spring 2012
Lecture #2

•  Huffman codes wrap-up: Properties & limitations
•  Adaptive variable-length codes: LZW

6.02 Spring 2012 Lecture 2, Slide #2

Source
Coding

Source
Decoding

Transmit/Receive
(or Store/Retrieve) bitsIN bitsOUT

6.02 Spring 2012 Lecture 2, Slide #3

Example from Last Lecture

choicei pi log2(1/pi)
pi ∗

log2(1/pi)
Huffman
encoding

Expected
length

“A” 1/3 1.58 bits 0.528 bits 10 0.667 bits

“B” 1/2 1 bit 0.5 bits 0 0.5 bits

“C” 1/12 3.58 bits 0.299 bits 110 0.25 bits

“D” 1/12 3.58 bits 0.299 bits 111 0.25 bits

1.626 bits 1.667 bits

16 Pairs: 1.646 bits/sym
64 Triples: 1.637 bits/sym
256 Quads: 1.633 bits/sym

Entropy is 1.626 bits/symbol, expected length of Huffman
encoding is 1.667 bits/symbol.

How do we do better?

6.02 Spring 2012 Lecture 2, Slide #4

Halftime Quiz
•  Write your name and recitation time on a sheet of paper.

•  Write the question number and your answer on it.
•  Turn the paper in at the end of lecture to me.

1.  Which of these (A, B, C) is a valid Huffman code tree?

Answer: B

2. What is the expected length of the code in tree C above?

Answer: 0.4*1 + 0.2*2 + 0.1*3 + 0.3*3 = 2.0 bits

X
p=0.4

Y
p=0.3

Z,
p=0.3

A.

X, p=0.4

Y, p=0.3

Z, p=0.2

B.

W, p=0.1

X, p=0.4

Y, p=0.2

Z, p=0.3

C.

W, p=0.1

2/14/12

2

6.02 Spring 2012 Lecture 2, Slide #5

How to Send Shakespeare’s Sonnets?!

6.02 Spring 2012 Lecture 2, Slide #6

What is the Entropy of English?

Assuming IID letter distribution,
entropy works out to 4.177 bits per letter

http://www.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html

6.02 Spring 2012 Lecture 2, Slide #7

In fact, English text has lots of context

•  What’s the next letter in the snippet
Nothing can be said to be certain, except death and ta?

•  But X has a very low occurrence probability

(0.0017) in English words
–  Letters are not independently distributed!

•  Shannon and others have found that the entropy of

English text is a lot lower than 4.177
–  Shannon estimated 0.6-1.3 bits/letter using human expts

–  More recent estimates: 1-1.5 bits/letter

Can we do adaptive variable-length encoding?

6.02 Spring 2012 Lecture 2, Slide #8

LZW: An Adaptive Variable-length Code
• Algorithm first developed by Ziv and

Lempel (LZ88, LZ78), later improved by
Welch.

• As message is processed, encoder
builds a “string table” that maps
symbol sequences to an N-bit fixed-
length code. Table size = 2N

• Transmit table indices, usually shorter
than the corresponding string →
compression!

• Note: String table can be reconstructed
by the decoder using information in the
encoded stream – the table, while
central to the encoding and decoding
process, is never transmitted!

0 0

1 1

2 2

3 3

4 4

… …

252 252

253 253

254 254

255 255

256

257

258

259

260

261

262

…

2N-1

First 256 table
entries hold all
the one-byte
strings (eg,
ASCII codes).

Remaining
entries are
filled with
sequences from
the message.
When full,
reinitialize
table…

2/14/12

3

6.02 Spring 2012 Lecture 2, Slide #9

LZW Encoding
STRING = get input symbol
WHILE there are still input symbols DO
 SYMBOL = get input symbol
 IF STRING + SYMBOL is in the STRINGTABLE THEN
 STRING = STRING + SYMBOL
 ELSE
 output the code for STRING
 add STRING + SYMBOL to STRINGTABLE
 STRING = SYMBOL
 END
END

output the code for STRING

From http://marknelson.us/1989/10/01/lzw-data-compression/

1.  Accumulate message bytes in S as long as S appears in table.
2.  When S+b isn’t in table: send code for S, add S+b to table.
3.  Reinitialize S with b, back to step 1.

6.02 Spring 2012 Lecture 2, Slide #10

Example: Encode “abbbabbbab…”
1.  Read a; string = a

2.  Read b; ab not in table
output 97, add ab to table, string = b

3.  Read b; bb not in table
output 98, add bb to table, string = b

4.  Read b; bb in table, string = bb

5.  Read a; bba not in table
output 257, add bba to table, string = a

6.  Read b, ab in table, string = ab

7.  Read b, abb not in table
output 256, add abb to table, string = b

8.  Read b, bb in table, string = bb

9.  Read a, bba in table, string = bba

10. Read b, bbab not in table
output 258, add bbab to table, string = b

256

257

258

259

260

261

262

ab

bb

bba

abb

bbab

6.02 Spring 2012 Lecture 2, Slide #11

Encoder Notes
•  The encoder algorithm is greedy – it’s designed to find the

longest possible match in the string table before it makes a
transmission.

•  The string table is filled with sequences actually found in the
message stream. No encodings are wasted on sequences not
actually found in the input data.

•  Note that in this example the amount of compression
increases as the encoding progresses, i.e., more input bytes
are consumed between transmissions.

•  Eventually the table will fill and then be reinitialized,
recycling the N-bit codes for new sequences. So the encoder
will eventually adapt to changes in the probabilities of the
symbols or symbol sequences.

•  Remarkably, LZW actually achieves entropy for long
messages!

6.02 Spring 2012 Lecture 2, Slide #12

LZW Decoding, 1st Attempt
(somewhat wrong!)

Read CODE
STRING = TABLE[CODE] // translation table @ decoder

WHILE there are still codes to receive DO
 Read CODE
 ENTRY = TABLE[CODE]

 output ENTRY
 add STRING+ENTRY[0] to the translation table
 STRING = ENTRY
END

Easy: use table lookup to convert code to message string
Less easy: build table that’s identical to that in encoder

2/14/12

4

6.02 Spring 2012 Lecture 2, Slide #13

Example: Decode 97, 97, 257, 256, 258

1.  Read 97;
output a; string = a

2.  Read 98; entry = b
output b; add ab to table; string = b

3.  Read 257; entry = bb
output bb; add bb to table; string = bb

4.  Read 256; entry = ab
output ab; add bba to table; string = ab

5.  Read 258; entry = bba
output bba; add abb to table; string = bba
…

256

257

258

259

260

261

262

ab

bb

bba

abb

6.02 Spring 2012 Lecture 2, Slide #14

LZW Decoding
Read CODE
STRING = TABLE[CODE] // translation table

WHILE there are still codes to receive DO
 Read CODE from encoder
 IF CODE is not in the translation table THEN
 ENTRY = STRING + STRING[0]
 ELSE
 ENTRY = get translation of CODE
 END
 output ENTRY
 add STRING+ENTRY[0] to the translation table
 STRING = ENTRY
END

Example: abababa

Easy: use table lookup to convert code to message string
Less easy: build table that’s identical to that in encoder

