

Physical Links are Inherently Analog

Wire: Send signals of different voltages; receiver measures voltage

Optical: send signals with different intensities (possibly at different wavelengths)

Radio/Acoustic: A bit trickier, but we can send at different amplitudes
\qquad

Digital Signaling: Receiving

Digital Signaling: Map Bits to Signals

To ensure we can distinguish signal from noise, we'll map bits to signals using a fixed set of discrete values. For example, in a bipolar signaling (or bipolar mapping) scheme we use two voltages:

V0 is the binary value " 0 "
V1 is the binary value " 1 "
At the receiver,

- Voltages near V0 would be interpreted as representing "0"
- Voltages near V1 would be interpreted as representing " 1 "
- If we space V0 and V1 far enough apart, we can tolerate some degree of noise, N

We can specify the behavior of the receiver with a graph that shows how incoming voltages are mapped to " 0 " and " 1 ".

One possibility:
The boundary between " 0 " and " 1 " regions is called the

If received voltage between $V 0 \& \underline{V 1+V 0} \rightarrow$ ' 0 ', else ' 1 '

The rest of 6.02 is about the colored oval
Simplest network is a single physical comm link We'll start with that, then get to networks with many links

Network Communication Model Three Abstraction Layers: Packets, Bits, Signals

Single Link Communication Model

Error Model: Binary Symmetric Channel

Suppose we wanted to reliably transmit the result of a single coin flip:

Suppose that during transmission a " 0 " is turned into a
" 1 " or a " 1 " is turned into a " 0 " with probability ε.
This is a binary symmetric channel (BSC).

How to Construct Codes?

0000000	1100001	1100110	0000111
0101010	1001011	1001100	0101101
1010010	0110011	0110100	1010101
1111000	0011001	0011110	1111111

Want: 4-bit messages with single error correction (min HD=3) Quick, produce a code, i.e., a set of codewords, with this property!

Hamming Distance of Code v. Detection \& Correction Capabilities

If D is the minimum Hamming distance between codewords, we can detect all patterns of $<=(\mathrm{D}-1)$ bit errors

If D is the minimum Hamming distance between codewords, we can
correct all patterns of $\left\lfloor\frac{D-1}{2}\right\rfloor$
or fewer bit errors

The Hamming distance is satisfies the triangle inequality.
6.02 Spring 2012

Gaining Some Insight: Parity Calculations

We can add single-bit error detection to any length code word by adding a parity bit chosen to guarantee the Hamming distance between any two valid code words is at least 2.

Parity: addition in $\mathrm{GF}(2): 0+0=0,1+0=0+1=1,1+1=0$ multiplication: $0 * 0=0 * 1=1 * 0=0,1 * 1=1$

GF(2) arithmetic: Can count by summing the bits in the word modulo 2 (equivalent to XOR'ing the bits together).

A Simple Code: Parity Check

- Add a parity bit to message of length k to make the total number of " 1 " bits even (aka "even parity").
- If the number of " 1 "s in the received word is odd, there there has been an error.
$\begin{array}{llllllllllllll}0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & \rightarrow \text { original word with parity bit } \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & \rightarrow \text { single-bit error (detected) bit }\end{array}$ $011000110011 \rightarrow 2$-bit error (not detected) bit
- Hamming distance of parity check code is 2
- Can detect all single-bit errors
- In fact, can detect all odd number of errors
- But cannot detect even number of errors
- And cannot correct any errors

Linear Block Codes

Block code: k message bits encoded to n code bits I.e., each of 2^{k} messages encoded into a unique n -bit combination via a linear transformation.
Set of parity equations (in GF(2)) represents code.
Key property: Sum of any two codewords is also a codeword \rightarrow necessary and sufficient for code to be linear.
(n, k) code has rate k / n.
Sometime written as ($\mathrm{n}, \mathrm{k}, \mathrm{d}$), where d is the Hamming Distance of the code.

Examples: What are n, k, d here?

(n, k) Systematic Linear Block Codes

- Split data into k-bit blocks
- Add ($n-k$) parity bits to each block using ($n-k$) linear equations, making each block n bits long

- Every linear code can be represented in systematic form

