

	How to Construct Codes?				
	0000000 0101010 1010010 1111000	1100001 1001011 0110011 0011001	1100110 1001100 0110100 0011110	0000111 0101101 1010101 1111111	
Want: 4-bit messages with single error correction (min HD=3) Quick, produce a code, i.e., a set of codewords, with this property!					
	6.02 Spring 2012			Lecture 3. Slide #15	

A Simple Code: Parity Check

- Add a parity bit to message of length k to make the total number of "1" bits even (aka "even parity").
- If the number of "1"s in the received word is *odd*, there there has been an error.

0 1 1 0 0 1 0 1 0 0 1 1 \rightarrow original word with parity bit 0 1 1 0 0 0 0 1 0 0 1 1 \rightarrow single-bit error (detected) bit 0 1 1 0 0 0 1 1 0 0 1 1 \rightarrow 2-bit error (not detected) bit

- Hamming distance of parity check code is 2
 - Can detect all single-bit errors
 - In fact, can detect all odd number of errors
 - But cannot detect even number of errors
 - And cannot correct any errors

6.02 Spring 2012

Linear Block Codes

Block code: k message bits encoded to n code bits I.e., each of 2^k messages encoded into a unique n-bit combination via a *linear transformation*. Set of parity equations (in GF(2)) represents code.

Key property: Sum of any two codewords is *also* a codeword \rightarrow necessary and sufficient for code to be linear.

(n,k) code has rate k/n. Sometime written as (n,k,d), where d is the Hamming Distance of the code.

Lecture 3, Slide #18

Examples: What are n, k, d here? $\{000, 111\}$ (3,1,3). Rate= 1/3. $\{0000, 1100, 0011, 1111\}$ (4,2,2). Rate = $\frac{1}{2}$. {00000} $\{5,0,_\}$. Rate = 0! {1111, 0000, 0001} _____ Not linear {1111, 0000, 0010, 1100} / codes! The HD of a linear code is the number of 0000000 1100001 1100110 0000111 "1"s in the non-0101010 1001011 1001100 0101101 zero codeword 1010010 0110011 0110100 1010101 with the 1111000 0011001 0011110 1111111 smallest # of "1"s (7,4,3) code. Rate = 4/7. Lecture 3, Slide #19

