
2/20/12

1

6.02 Spring 2012 Lecture 3, Slide #1

6.02 Spring 2012
Lecture #3

• Errors in communication
• Redundancy with coding (intro)

6.02 Spring 2012 Lecture 3, Slide #2

Physical Links are Inherently Analog

Wire: Send signals of different voltages; receiver
measures voltage

Optical: send signals with different intensities
(possibly at different wavelengths)

Radio/Acoustic: A bit trickier, but we can send
at different amplitudes

6.02 Spring 2012 Lecture 3, Slide #3

Digital Signaling: Map Bits to Signals
To ensure we can distinguish signal from noise, we’ll map bits
to signals using a fixed set of discrete values. For example, in
a bipolar signaling (or bipolar mapping) scheme we use two
voltages:

 V0 is the binary value “0”
 V1 is the binary value “1”

At the receiver,
•  Voltages near V0 would be interpreted as representing “0”
•  Voltages near V1 would be interpreted as representing “1”
•  If we space V0 and V1 far enough apart, we can tolerate

some degree of noise, N

V0

+N -N

volts
V1

+N -N

“0” “1”
6.02 Spring 2012 Lecture 3, Slide #4

Digital Signaling: Receiving

We can specify the behavior of the receiver with a graph that
shows how incoming voltages are mapped to “0” and “1”.

One possibility:

V0
volts

V1

“1”

“0”
V1+V0
2

The boundary between “0”
and “1” regions is called the
threshold voltage.

If received voltage between V0 & à ‘0’, else ‘1’

V1+V0
2

2/20/12

2

6.02 Spring 2012 Lecture 3, Slide #5

Packaging Messages for Transmission and
Reception

Digitize
(if needed)

Original source

Source coding

Source binary digits
(“message bits”)

Bit stream

COMMUNICATION NETWORK

Render/display,
etc.

Receiving app/user

Source decoding

Bit stream

The rest of 6.02 is about the colored oval
Simplest network is a single physical comm link
We’ll start with that, then get to networks with many links

6.02 Spring 2012 Lecture 3, Slide #6

Single Link Communication Model

Digitize
(if needed)

Original source

Source coding

Source binary digits
(“message bits”)

Bit stream

Render/display,
etc.

Receiving app/user

Source decoding

Bit stream

Channel
Coding

(bit error
correction)

Recv
samples

+
Demapper

Mapper
+

Xmit
samples

Bits Signals
(Voltages)

over
physical link

Channel
Decoding

(reducing or
removing
bit errors)

End-host
computers

Bits

6.02 Spring 2012 Lecture 3, Slide #7

Network Communication Model
Three Abstraction Layers: Packets, Bits, Signals

Digitize
(if needed)

Original source

Source coding

Source binary digits
(“message bits”)

Packets

Render/display,
etc.

Receiving app/user

Source decoding

Bit stream

End-host
computers

Packetize

Switch
Switch Switch

Switch

Buffer + stream

LINK
LINK LINK

LINK

Packets à Bits à Signals à Bits à Packets

Bit stream

6.02 Spring 2012 Lecture 3, Slide #8

Error Model: Binary Symmetric Channel
Suppose we wanted to reliably transmit the result of a single coin
flip:

Suppose that during transmission a “0” is turned into a
“1” or a “1” is turned into a “0” with probability ε.
This is a binary symmetric channel (BSC).

0

1 with prob ε

“heads” “tails”

Heads: “0” Tails: “1”

This is a prototype of the
“bit” coin for the new
information economy. Value
= 12.5¢

2/20/12

3

6.02 Spring 2012 Lecture 3, Slide #9

Performance of Replication Code

Replication factor, n (1/code_rate)

Prob(decoding error) over BSC w/ p=0.01

Code: Bit b coded as bb…b (n times)
Exponential fall-off (note log scale)
But huge overhead (low code rate)

We can do a lot better!

6.02 Spring 2012 Lecture 3, Slide #10

Hamming Distance

The number of bit positions
in which the corresponding
bits of two encodings of the
same length are different

The Hamming Distance (HD) between a valid binary code word
and the same code word with e errors is e.

The problem with no coding is that the two valid code words (“0”
and “1”) also have a Hamming distance of 1. So a single-bit error
changes a valid code word into another valid code word…

What is the Hamming Distance of the replication code?

1 0 “heads” “tails”

single-bit error

I wish he’d
increase his
hamming distance

6.02 Spring 2012 Lecture 3, Slide #11

Idea: Embedding for Structural Separation
Encode so that the codewords are “far enough” from
each other
Likely error patterns shouldn’t transform one codeword
to another

11 00 “0” “1”

01

10
single-bit error may
cause 00 to be 10
(or 01)

110

000 “0”

“1”

100

010

111

001

101

011

Code: nodes chosen in
hypercube + mapping
of message bits to nodes

If we choose 2k out of
2n nodes, it means
we can map all k-bit
message strings in a
space of n-bit codewords.
The code rate is k/n.

6.02 Spring 2012 Lecture 3, Slide #12

010
00

010
11

010
01

011
10

011
00

011
11

011
01

010
10

000
00

000
11

000
01

001
10

001
00

001
11

001
01

000
10

110
00

110
11

110
01

111
10

111
00

111
11

111
01

110
10

100
00

100
11

100
01

101
10

101
00

101
11

101
01

100
10

Each 0abcd
connected to
1abcd
(not shown)

2/20/12

4

6.02 Spring 2012 Lecture 3, Slide #13

010110

000000

110011

111000

011101

001011

101110

100101

6.02 Spring 2012 Lecture 3, Slide #14

Hamming Distance of Code v.
Detection & Correction Capabilities

If D is the minimum Hamming distance between codewords, we can
detect all patterns of <= (D-1) bit errors

If D is the minimum Hamming distance between codewords, we can
correct all patterns of

or fewer bit errors

!"

!
#$

%

2
1D

The Hamming distance is satisfies the triangle inequality.

6.02 Spring 2012 Lecture 3, Slide #15

How to Construct Codes?

Want: 4-bit messages with single error correction (min HD=3)

Quick, produce a code, i.e., a set of codewords, with this property!

6.02 Spring 2012 Lecture 3, Slide #16

Gaining Some Insight: Parity Calculations

We can add single-bit error detection to any length
code word by adding a parity bit chosen to guarantee
the Hamming distance between any two valid code
words is at least 2.

Parity: addition in GF(2): 0+0=0, 1+0=0+1=1, 1+1=0

 multiplication: 0*0=0*1=1*0 =0, 1*1=1

GF(2) arithmetic: Can count by summing the bits in
the word modulo 2 (equivalent to XOR’ing the bits
together).

2/20/12

5

6.02 Spring 2012 Lecture 3, Slide #17

A Simple Code: Parity Check

•  Add a parity bit to message of length k to make the
total number of “1” bits even (aka “even parity”).

•  If the number of “1”s in the received word is odd,
there there has been an error.

0 1 1 0 0 1 0 1 0 0 1 1 → original word with parity bit
0 1 1 0 0 0 0 1 0 0 1 1 → single-bit error (detected) bit
0 1 1 0 0 0 1 1 0 0 1 1 → 2-bit error (not detected) bit

•  Hamming distance of parity check code is 2
–  Can detect all single-bit errors

–  In fact, can detect all odd number of errors
–  But cannot detect even number of errors

–  And cannot correct any errors

6.02 Spring 2012 Lecture 3, Slide #18

Linear Block Codes

Block code: k message bits encoded to n code bits
I.e., each of 2k messages encoded into a unique n-bit
combination via a linear transformation.
Set of parity equations (in GF(2)) represents code.

Key property: Sum of any two codewords is also a
codeword à necessary and sufficient for code to be
linear.

(n,k) code has rate k/n.
Sometime written as (n,k,d), where d is the Hamming
Distance of the code.

6.02 Spring 2012 Lecture 3, Slide #19

Examples: What are n, k, d here?

{000, 111}

{0000, 1100, 0011, 1111}

{00000}

{1111, 0000, 0001}

{1111, 0000, 0010, 1100}

Not linear
codes! The HD of a

linear code is
the number of
“1”s in the non-
zero codeword
with the
smallest # of
“1”s

(3,1,3). Rate= 1/3.

(4,2,2). Rate = ½.

{5,0,_). Rate = 0!

(7,4,3) code. Rate = 4/7.
6.02 Spring 2012 Lecture 3, Slide #20

(n,k) Systematic Linear Block Codes

•  Split data into k-bit blocks
•  Add (n-k) parity bits to each block using (n-k) linear

equations, making each block n bits long

•  Every linear code can be represented in systematic
form

Message bits Parity bits

k

n
The entire block is the
called the “code word
in systematic form”

n-k

