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6.02 Spring 2012 
Lecture #3 

• Errors in communication 
• Redundancy with coding (intro) 

6.02 Spring 2012 Lecture 3, Slide #2 

Physical Links are Inherently Analog 

Wire: Send signals of different voltages; receiver 
measures voltage 
 
Optical: send signals with different intensities 
(possibly at different wavelengths) 
 
Radio/Acoustic: A bit trickier, but we can send 
at different amplitudes 
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Digital Signaling: Map Bits to Signals 
To ensure we can distinguish signal from noise, we’ll map bits 
to signals using a fixed set of discrete values.  For example, in 
a bipolar signaling (or bipolar mapping) scheme we use two 
voltages:  

 V0 is the binary value “0”  
 V1 is the binary value “1” 

 
At the receiver, 
•  Voltages near V0 would be interpreted as representing “0” 
•  Voltages near V1 would be interpreted as representing “1” 
•  If we space V0 and V1 far enough apart, we can tolerate 

some degree of noise, N 

V0 

+N -N 

volts 
V1 

+N -N 

“0” “1” 
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Digital Signaling: Receiving 

We can specify the behavior of the receiver with a graph that 
shows how incoming voltages are mapped to “0” and “1”. 
 
One possibility: 

V0 
volts 

V1 

“1” 

“0” 
V1+V0
2

The boundary between “0” 
and “1” regions is called the 
threshold voltage. 

If received voltage between V0 &           à ‘0’, else ‘1’ 
 

V1+V0
2
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Packaging Messages for Transmission and 
Reception 

Digitize 
(if needed) 

Original source 

Source coding 

Source binary digits 
(“message bits”) 

Bit stream 

COMMUNICATION NETWORK 

Render/display,  
etc. 

Receiving app/user 

Source decoding 

Bit stream 

The rest of 6.02 is about the colored oval 
Simplest network is a single physical comm link 
We’ll start with that, then get to networks with many links 
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Single Link Communication Model 

Digitize 
(if needed) 

Original source 

Source coding 

Source binary digits 
(“message bits”) 

Bit stream 

Render/display,  
etc. 

Receiving app/user 

Source decoding 

Bit stream 

Channel 
Coding 

(bit error  
correction) 

Recv 
samples 

+ 
Demapper 

Mapper 
+ 

Xmit 
samples 

Bits Signals 
(Voltages) 

over 
physical link 

Channel 
Decoding 

(reducing or 
removing  
bit errors) 

End-host 
computers 

Bits 
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Network Communication Model 
Three Abstraction Layers: Packets, Bits, Signals 

Digitize 
(if needed) 

Original source 

Source coding 

Source binary digits 
(“message bits”) 

Packets 

Render/display,  
etc. 

Receiving app/user 

Source decoding 

Bit stream 

End-host 
computers 

Packetize 

Switch 
Switch Switch 

Switch 

Buffer + stream 

LINK 
LINK LINK 

LINK 

Packets à Bits à Signals à Bits à Packets 

Bit stream 
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Error Model: Binary Symmetric Channel 
Suppose we wanted to reliably transmit the result of a single coin 
flip: 

Suppose that during transmission a “0” is turned into a 
“1” or a “1” is turned into a “0” with probability ε. 
This is a binary symmetric channel (BSC). 

0 

1 with prob ε 

“heads” “tails” 

Heads: “0” Tails: “1” 

This is a prototype of the 
“bit” coin for the new 
information economy.  Value 
= 12.5¢ 
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Performance of Replication Code 

Replication factor, n (1/code_rate) 

Prob(decoding error) over BSC w/ p=0.01 

Code: Bit b coded as bb…b (n times) 
Exponential fall-off (note log scale) 
But huge overhead (low code rate) 

We can do a lot better! 
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Hamming Distance 

The number of bit positions 
in which the corresponding 
bits of two encodings of the 
same length are different 

The Hamming Distance (HD) between a valid binary code word 
and the same code word with e errors is e. 
 
The problem with no coding is that the two valid code words (“0” 
and “1”) also have a Hamming distance of 1.  So a single-bit error 
changes a valid code word into another valid code word… 
 
 
 
 
 
What is the Hamming Distance of the replication code? 

1 0 “heads” “tails” 

single-bit error 

I wish he’d 
increase his 
hamming distance 
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Idea: Embedding for Structural Separation 
Encode so that the codewords are “far enough” from 
each other 
Likely error patterns shouldn’t transform one codeword 
to another 

11 00 “0” “1” 

01 

10 
single-bit error may 
cause 00 to be 10 
(or 01) 

110 

000 “0” 

“1” 

100 

010 

111 

001 

101 

011 

Code: nodes chosen in 
hypercube + mapping  
of message bits to nodes 

If we choose 2k out of 
2n nodes, it means 
we can map all k-bit  
message strings in a 
space of n-bit codewords. 
The code rate is k/n. 
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Each 0abcd  
connected to  
1abcd 
(not shown) 
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010110 

000000 

110011 

111000 

011101 

001011 

101110 

100101 
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Hamming Distance of Code v.  
Detection & Correction Capabilities 

If D is the minimum Hamming distance between codewords, we can 
detect all patterns of <= (D-1) bit errors  

If D is the minimum Hamming distance between codewords, we can 
correct all patterns of             

 
or fewer bit errors  

!"

!
#$

# %

2
1D

The Hamming distance is satisfies the triangle inequality. 
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How to Construct Codes? 

Want: 4-bit messages with single error correction (min HD=3) 
 
Quick, produce a code, i.e., a set of codewords, with this property! 
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Gaining Some Insight: Parity Calculations 

We can add single-bit error detection to any length 
code word by adding a parity bit chosen to guarantee 
the Hamming distance between any two valid code 
words is at least 2.  
 
Parity: addition in GF(2): 0+0=0, 1+0=0+1=1, 1+1=0 

   multiplication: 0*0=0*1=1*0 =0, 1*1=1 
 

GF(2) arithmetic: Can count by summing the bits in 
the word modulo 2 (equivalent to XOR’ing the bits 
together). 
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A Simple Code: Parity Check 

•  Add a parity bit to message of length k to make the 
total number of “1” bits even (aka “even parity”). 

•  If the number of “1”s in the received word is odd, 
there there has been an error. 
 
0 1 1 0 0 1 0 1 0 0 1 1 → original word with parity bit 
0 1 1 0 0 0 0 1 0 0 1 1 → single-bit error (detected) bit 
0 1 1 0 0 0 1 1 0 0 1 1 → 2-bit error (not detected) bit 
 

•  Hamming distance of parity check code is 2 
–  Can detect all single-bit errors 

–  In fact, can detect all odd number of errors 
–  But cannot detect even number of errors 

–  And cannot correct any errors 
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Linear Block Codes 

Block code: k message bits encoded to n code bits 
I.e., each of 2k messages encoded into a unique n-bit 
combination via a linear transformation. 
Set of parity equations (in GF(2)) represents code. 
 
Key property: Sum of any two codewords is also a 
codeword à necessary and sufficient for code to be 
linear. 
 
(n,k) code has rate k/n. 
Sometime written as (n,k,d), where d is the Hamming 
Distance of the code. 
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Examples: What are n, k, d here? 

{000, 111} 
 
{0000, 1100, 0011, 1111} 
 
{00000} 

{1111, 0000, 0001} 

{1111, 0000, 0010, 1100} 

Not linear 
codes! The HD of a 

linear code is 
the number of 
“1”s in the non-
zero codeword 
with the 
smallest # of 
“1”s 

(3,1,3). Rate= 1/3. 
 
(4,2,2). Rate = ½. 
 
{5,0,_). Rate = 0! 

(7,4,3) code. Rate = 4/7. 
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(n,k) Systematic Linear Block Codes 

•  Split data into k-bit blocks 
•  Add (n-k) parity bits to each block using (n-k) linear 

equations, making each block n bits long 

•  Every linear code can be represented in systematic 
form 

Message bits Parity bits 

k 

n 
The entire block is the 
called the “code word 
in systematic form” 

n-k 


