6.02 Spring 2012
Lecture #4

• Linear block codes - Properties
• Rectangular parity, Hamming

Idea: Embedding for Structural Separation

Encode so that the codewords are "far enough" from each other.
Likely error patterns shouldn't transform one codeword to another.

Code: nodes chosen in hypercube + mapping of message bits to nodes.

If we choose 2^k out of 2^n nodes, it means we can map all k-bit message strings in a space of n-bit codewords.
The code rate is k/n.

Linear Block Codes

Block code: k message bits encoded to n code bits i.e., each of 2^k messages encoded into a unique n-bit combination via a linear transformation.
Set of parity equations (in GF(2)) represents code.

Key property: Sum of any two codewords is also a codeword \Rightarrow necessary and sufficient for code to be linear.

(n,k,d) code has rate k/n.
Sometime written as (n,k,d), where d is the Hamming Distance of the code.
Examples: What are n, k, d here?

\{000, 111\} \quad (3,1,3). Rate= 1/3.
\{0000, 1110, 0011, 1111\} \quad (4,2,2). Rate = 1/2.
\{00000\} \quad (5,0,2). Rate = 0!
\{1111, 0000, 0001\}
\{1111, 0000, 0010, 1100\}
\{000000, 110001, 110110, 000111\}
\{010101, 010111, 100110, 010101\}
\{111100, 001100, 001111, 111111\}
\{7,4,3\} code. Rate = 4/7.

\begin{itemize}
 \item Split data into k-bit blocks
 \item Add (n-k) parity bits to each block using (n-k) linear equations, making each block n bits long
\end{itemize}

The entire block is called the "code word in systematic form"

Example: Rectangular Parity Codes

<table>
<thead>
<tr>
<th>D_1</th>
<th>D_2</th>
<th>P_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_3</td>
<td>D_4</td>
<td>P_2</td>
</tr>
<tr>
<td>P_3</td>
<td>P_4</td>
<td></td>
</tr>
</tbody>
</table>

P_1 is parity bit for row #1
P_2 is parity bit for column #2

-Idea: start with rectangular array of data bits, add parity checks for each row and column. Single-bit error in data will show up as parity errors in a particular row and column, pinpointing the bit that has the error.

\begin{itemize}
 \item Parity for each row and column is correct ⇒ no errors
 \item Parity check fails for row #2 and column #2 ⇒ bit D_4 is incorrect
 \item Parity check only fails for row #2 ⇒ bit P_2 is incorrect
\end{itemize}

(n,k) Systematic Linear Block Codes

- Every linear code can be represented in systematic form

Rectangular Code Corrects Single Errors

Claim: The HD of the rectangular code with r rows and c columns is 3. Hence, it is a single error correction (SEC) code.

Code rate = rc / (rc + r + c).

If we add an overall parity bit P, we get a (rc+r+c+1, rc, 4) code

Improves error detection but not correction capability

Proof: Three cases.

1. Msgs with HD = 1 ⇒ differ in 1 row and 1 col parity
2. Msgs with HD = 2 ⇒ differ in either row OR col or both ⇒ HD = 4 here.
3. Msgs with HD = 3 or more ⇒ systematic code so differ in that many bits
Decoding Rectangular Parity Codes

Receiver gets possibly corrupted word, w.
Calculates all the parity bits from the data bits.
If no parity errors, return rc bits of data.
Single row or column parity bit error \rightarrow rc data bits are fine, return them
If parity of row x and parity of column y are in error, then the data bit in the (x,y) position is wrong; flip it and return the rc data bits
All other parity errors are uncorrectable. Return the data as-is, flag an “uncorrectable error”

Let’s do some rectangular parity decoding

Received codewords

1. Decoded message bits: ____________

2. Decoded message bits: ____________

3. Decoded message bits: ____________

Towards More Efficient Codes: (7,4,3) Hamming Code Example

- Use multiple parity bits, each covering a subset of the data bits.
- No two message bits belong to exactly the same subsets, so a single-bit error will generate a unique set of parity check errors.

How Many Parity Bits Do We Really Need?

- We have $n-k$ parity bits, which collectively can represent 2^{n-k} possibilities
- For single-bit error correction, parity bits need to represent two sets of cases:
 - Case 1: No error has occurred (1 possibility)
 - Case 2: Exactly one of the code word bits has an error (n possibilities, not k)
- So we need $n+1 \leq 2^{n-k}$
- Rectangular codes do not satisfy the equality
- Hamming codes correct single errors with this minimum number of parity bits
 $(7,4,3), \ldots, (2^m - 1, 2^m - 1 - m, 3)$
Logic Behind Hamming Code Construction

- Idea: Use parity bits to cover each axis of the binary vector space
 - That way, all message bits will be covered with a unique combination of parity bits

<table>
<thead>
<tr>
<th>Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary index</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>(7,4) code</td>
<td>P₁</td>
<td>P₂</td>
<td>D₁</td>
<td>P₃</td>
<td>D₂</td>
<td>D₃</td>
<td>D₄</td>
</tr>
</tbody>
</table>

P₁ with binary index 001 covers

P₂ = D₁ + D₂ + D₄
P₃ = D₁ + D₃ + D₄

D₁ with binary index 011
D₂ with binary index 101
D₃ with binary index 111
D₄ with binary index 111