

InTRODUCTION TO EECS II

DIGITAL

COMMUNICATION

 SYSTEMS
6.02 Spring 2012

 Lecture \#4-Linear block codes - Properties

- Rectangular parity, Hamming

Idea: Embedding for Structural Separation

s
Encode so that the codewords are "far enough" from each other Likely error patterns shouldn't transform one codeword to another

Code: nodes chosen in hypercube + mapping single-bit error may cause 00 to be $10 \longrightarrow 10$
(or 01)

If we choose 2^{k} out of 2^{n} nodes, it means we can map all k-bit message strings in a space of n-bit codewords. The code rate is \mathbf{k} / \mathbf{n}.

Single Link Communication Model

Linear Block Codes

Block code: \boldsymbol{k} message bits encoded to \mathbf{n} code bits i.e., each of $\mathbf{2}^{\boldsymbol{k}}$ messages encoded into a unique \mathbf{n}-bit combination via a linear transformation.
Set of parity equations (in GF(2)) represents code.
Key property: Sum of any two codewords is also a codeword \rightarrow necessary and sufficient for code to be linear.
(\mathbf{n}, \mathbf{k}) code has rate \mathbf{k} / \mathbf{n}.
Sometime written as ($\mathbf{n}, \mathbf{k}, \mathbf{d}$), where \mathbf{d} is the Hamming Distance of the code.

Examples: What are $\mathrm{n}, \mathrm{k}, \mathrm{d}$ here?

Example: Rectangular Parity Codes

Idea: start with rectangular array of data bits, add parity checks for each row and column. Single-bit error in data will show up as parity errors in a particular row and column, pinpointing the bit that has the error.

$\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0\end{array}$
10

$\begin{array}{lll}01 & 1 \\ 1\end{array}$
 10

$\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 1\end{array}$

10

Parity for each row and column is correct \Rightarrow no errors

Parity check fails for row \#2 and column \#2 \Rightarrow bit D_{4} is incorrect

Parity check only fails for row \#2
\Rightarrow bit P_{2} is incorrect

(n, k) Systematic Linear Block Codes

- Split data into \boldsymbol{k}-bit blocks
- Add ($\boldsymbol{n}-\boldsymbol{k}$) parity bits to each block using ($\boldsymbol{n}-\boldsymbol{k}$) linear equations, making each block \boldsymbol{n} bits long

- Every linear code can be represented in systematic form

Rectangular Code Corrects Single Errors

Claim: The HD of the rectangular code with \boldsymbol{r} rows and \boldsymbol{c} columns is $\mathbf{3}$. Hence, it is a single error correction (SEC) code.
Code rate $=r c /(r c+r+c)$.
If we add an overall parity bit P,
we get a ($r c+r+c+1, r c, 4$) code
Improves error detection but not correction capability
Proof: Three cases.

D_{1}	D_{2}	D_{3}	D_{4}	P_{1}
D_{5}	D_{6}	D_{7}	D_{8}	P_{2}
D_{9}	D_{10}	D_{11}	D_{12}	P_{3}
P_{4}	P_{5}	P_{6}	P_{7}	P

(1) Msgs with HD $1 \rightarrow$ differ in 1 row and 1 col parity
(2) Msgs with HD $2 \rightarrow$ differ in either row OR col or
both \rightarrow HD $>=4$ here.
(3) Msgs with HD 3 or more \rightarrow systematic code so differ in that many bits
6.02 Spring 2012

Lecture 4, Slide \#8

Decoding Rectangular Parity Codes

Receiver gets possibly corrupted word, \boldsymbol{w}.
Calculates all the parity bits from the data bits.
If no parity errors, return $\boldsymbol{r c}$ bits of data.
Single row or column parity bit error $\rightarrow \boldsymbol{r c}$ data bits are fine, return them

If parity of row \boldsymbol{x} and parity of column \boldsymbol{y} are in error, then the data bit in the $(\boldsymbol{x}, \boldsymbol{y})$ position is wrong; flip it and return the $\boldsymbol{r c}$ data bits

All other parity errors are uncorrectable. Return the data as-is, flag an "uncorrectable error"

How Many Parity Bits Do We Really Need?

- We have n-k parity bits, which collectively can represent $\mathbf{2}^{\text {n-k }}$ possibilities
- For single-bit error correction, parity bits need to represent two sets of cases:
- Case 1: No error has occurred (1 possibility)
- Case 2: Exactly one of the code word bits has an error (\mathbf{n} possibilities, not \mathbf{k})
- So we need $\mathbf{n + 1} \leq \mathbf{2}^{\mathbf{n}-\mathbf{k}}$

$$
\mathrm{n} \leq 2^{\mathrm{n}-\mathrm{k}}-1 \quad \text { (Hamming bound) }
$$

- Rectangular codes do not satisfy the equality
- Hamming codes correct single errors with this minimum number of parity bits $(7,4,3), \ldots,\left(2^{\mathrm{m}}-1,2^{\mathrm{m}}-1-\mathrm{m}, 3\right)$

Let's do some rectangular parity decoding

Received codewords

I	0	1
0	I	0
0	1	

D1	D2	PI
D3	D4	P2
P3	P4	

1. Decoded message bits: \qquad 1011

0	0	0
1	1	1
1	1	

2. Decoded message bits:

0011
P2 parity error

0	0	1
0	1	0
0	0	

3. Decoded message bits: \qquad 0001
"uncorrectable"

Towards More Efficient Codes:
 $(7,4,3)$ Hamming Code Example

- Use multiple parity bits, each covering a subset of the data bits.
- No two message bits belong to exactly the same subsets, so a single-bit error will generate a unique set of parity check errors.

Logic Behind Hamming Code Construction

- Idea: Use parity bits to cover each axis of the binary vector space
- That way, all message bits will be covered with a unique combination of parity bits

Index	I	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Binary index	001	010	011	100	101	110	111
(7,4) code	PI	P2	D1	P3	D2	D3	D4

$\mathrm{P}_{1}=\mathrm{D}_{1}+\mathrm{D}_{2}+\mathrm{D}_{4}$
$\mathrm{P}_{2}=\mathrm{D}_{1}+\mathrm{D}_{3}+\mathrm{D}_{4}$
$\mathrm{P}_{3}=\mathrm{D}_{2}+\mathrm{D}_{3}+\mathrm{D}_{4}$
P_{1} with binary index 001 covers
D_{1} with binary index 011
D_{2} with binary index 101
D_{4} with binary index 111

