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6.02 Spring 2012 

Lecture #4 

•Linear block codes - Properties 

•Rectangular parity, Hamming 
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Single Link Communication Model 
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Idea: Embedding for Structural Separation 
Encode so that the codewords are “far enough” from 

each other 

Likely error patterns shouldn’t transform one codeword 

to another 

11 00 “0” “1” 

01 

10 
single-bit error may 

cause 00 to be 10 
(or 01) 

110 

000 “0” 

“1” 

100 

010 

111 

001 

101 

011 

Code: nodes chosen in 

hypercube + mapping  

of message bits to nodes 

If we choose 2k out of 

2n nodes, it means 

we can map all k-bit  

message strings in a 

space of n-bit codewords. 

The code rate is k/n. 
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Linear Block Codes 

Block code: k message bits encoded to n code bits 

i.e., each of 2k messages encoded into a unique n-bit 

combination via a linear transformation. 

Set of parity equations (in GF(2)) represents code. 

 

Key property: Sum of any two codewords is also a 

codeword  necessary and sufficient for code to be 

linear. 

 

(n,k) code has rate k/n. 

Sometime written as (n,k,d), where d is the Hamming 

Distance of the code. 
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Examples: What are n, k, d here? 

{000, 111} 

 

{0000, 1100, 0011, 1111} 

 

{00000} 

{1111, 0000, 0001} 

{1111, 0000, 0010, 1100} 

Not linear 

codes! The HD of a 

linear code is 

the number of 

“1”s in the 

non-zero 

codeword with 

the smallest # 

of “1”s 

(3,1,3). Rate= 1/3. 

 

(4,2,2). Rate = ½. 

 

{5,0,_). Rate = 0! 

(7,4,3) code. Rate = 4/7. 
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(n,k) Systematic Linear Block Codes 

• Split data into k-bit blocks 

• Add (n-k) parity bits to each block using (n-k) 

linear equations, making each block n bits long 

 

 

 

 

 

• Every linear code can be represented in systematic 

form 

Message bits Parity bits 

k 

n 

The entire block is  

called the “code word 

in systematic form” 

n-k 
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Example: Rectangular Parity Codes 

D1 D2 

D3 D4 

P3 P4 

P1 

P2 

P1 is parity bit 

for row #1 

P4 is parity bit 

for column #2 

Idea: start with rectangular 

array of data bits, add parity 

checks for each row and 

column.  Single-bit error in 

data will show up as parity 

errors in a particular row 

and column, pinpointing the 

bit that has the error. 

0 1 1 

1 1 0 

1 0 

0 1 1 

1 0 0 

1 0 

Parity for each row 

and column is 

correct  no errors 

Parity check fails for 

row #2 and column #2 

 bit D4 is incorrect 

0 1 1 

1 1 1 

1 0 

Parity check only fails 

for row #2  

 bit P2 is incorrect 

(n,k,d)=? 
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Rectangular Code Corrects Single Errors 

Claim: The HD of the rectangular code with r rows 

and c columns is 3.  Hence, it is a single error 

correction (SEC) code. 

Code rate = rc / (rc + r + c). 
D1 D2 

D5 D6 

P3 

P5 

P1 

P2 

D3 D4 

D7 D8 

D9 D10 D11 D12 

P4 P7 P6 

Proof: Three cases. 

(1) Msgs with HD 1  differ in 1 row and 1 col parity 

(2) Msgs with HD 2  differ in either row OR col or 

both  HD >= 4 here. 

(3) Msgs with HD 3 or more  systematic code so 

differ in that many bits 

If we add an overall parity bit P, 
we get a (rc+r+c+1, rc, 4) code 
 

Improves error detection but not 

correction capability 
P 
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Decoding Rectangular Parity Codes 

Receiver gets possibly corrupted word, w. 

Calculates all the parity bits from the data bits. 

If no parity errors, return rc bits of data. 

Single row or column parity bit error  rc data 

bits are fine, return them 

If parity of row x and parity of column y are in 

error, then the data bit in the (x,y) position is 

wrong; flip it and return the rc data bits 

All other parity errors are uncorrectable.  Return 

the data as-is, flag an “uncorrectable error” 
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Let’s do some rectangular parity decoding 

1 0 1 

0 1 0 

0 1 

Received codewords 

1. Decoded message bits: ________________ 

0 0 0 

1 1 1 

1 1 

0 0 1 

0 1 0 

0 0 

D1 D2 P1 

D3 D4 P2 

P3 P4 

2. Decoded message bits: ________________ 

3. Decoded message bits: ________________ 

1011 

0011 

0001 

“uncorrectable” 

P2 parity error 
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How Many Parity Bits Do We Really Need? 

• We have n-k parity bits, which collectively can 
represent 2n-k possibilities 

• For single-bit error correction, parity bits need to 
represent two sets of cases: 

– Case 1: No error has occurred (1 possibility) 

– Case 2: Exactly one of the code word bits has an 
error (n possibilities, not k) 

 

• So we need n+1 ≤ 2n-k  

             n ≤ 2n-k – 1  (Hamming bound) 

• Rectangular codes do not satisfy the equality 

• Hamming codes correct single errors with this 
minimum number of parity bits  

 (7,4,3), … , (2m –1,2m -1-m,3) 
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Towards More Efficient Codes:  
(7,4,3) Hamming Code Example 

• Use multiple parity bits, each covering a 

subset of the data bits. 

• No two message bits belong to exactly the 

same subsets, so a single-bit error will 

generate a unique set of parity check errors. 

D2 

D1 

D4 

D3 

P1 P2 

P3 

Suppose we check the 

parity and discover that P1 

and P3 indicate an error? 

    bit D2 must have flipped 

 

What if only P2 indicates 

an error? 

    P2 itself had the error! P1 = D1+D2+D4 

P2 = D1+D3+D4 

P3 = D2+D3+D4 

Modulo-2 

addition, 

aka XOR 
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Logic Behind Hamming Code Construction 

• Idea: Use parity bits to cover each axis of the 

binary vector space 

– That way, all message bits will be covered with a unique 

combination of parity bits 

 

Index 1 2 3 4 5 6 7 

Binary 

index 
001 010 011 100 101 110 111 

(7,4) 

code 

P1 P2 D1 P3 D2 D3 D4 

P1 = D1+D2+D4 

P2 = D1+D3+D4 

P3 = D2+D3+D4 

P1 with binary index 001 covers 

 

D1 with binary index 011 

D2 with binary index 101 

D4 with binary index 111 

 


