
2/21/2012

1

6.02 Spring 2012 Lecture 4, Slide #1

6.02 Spring 2012

Lecture #4

•Linear block codes - Properties

•Rectangular parity, Hamming

6.02 Spring 2012 Lecture 4, Slide #2

Single Link Communication Model

Digitize

(if needed)

Original source

Source coding

Source binary digits

(“message bits”)

Bit stream

Render/display,

etc.

Receiving app/user

Source decoding

Bit stream

Channel

Coding

(bit error

correction)

Recv

samples

+

Demapper

Mapper

+

Xmit

samples

Bits Signals

(Voltages)
over

physical link

Channel

Decoding

(reducing or

removing

bit errors)

End-host

computers

Bits

6.02 Spring 2012 Lecture 4, Slide #3

Idea: Embedding for Structural Separation
Encode so that the codewords are “far enough” from

each other

Likely error patterns shouldn’t transform one codeword

to another

11 00 “0” “1”

01

10
single-bit error may

cause 00 to be 10
(or 01)

110

000 “0”

“1”

100

010

111

001

101

011

Code: nodes chosen in

hypercube + mapping

of message bits to nodes

If we choose 2k out of

2n nodes, it means

we can map all k-bit

message strings in a

space of n-bit codewords.

The code rate is k/n.

6.02 Spring 2012 Lecture 4, Slide #4

Linear Block Codes

Block code: k message bits encoded to n code bits

i.e., each of 2k messages encoded into a unique n-bit

combination via a linear transformation.

Set of parity equations (in GF(2)) represents code.

Key property: Sum of any two codewords is also a

codeword  necessary and sufficient for code to be

linear.

(n,k) code has rate k/n.

Sometime written as (n,k,d), where d is the Hamming

Distance of the code.

2/21/2012

2

6.02 Spring 2012 Lecture 4, Slide #5

Examples: What are n, k, d here?

{000, 111}

{0000, 1100, 0011, 1111}

{00000}

{1111, 0000, 0001}

{1111, 0000, 0010, 1100}

Not linear

codes! The HD of a

linear code is

the number of

“1”s in the

non-zero

codeword with

the smallest #

of “1”s

(3,1,3). Rate= 1/3.

(4,2,2). Rate = ½.

{5,0,_). Rate = 0!

(7,4,3) code. Rate = 4/7.
6.02 Spring 2012 Lecture 4, Slide #6

(n,k) Systematic Linear Block Codes

• Split data into k-bit blocks

• Add (n-k) parity bits to each block using (n-k)

linear equations, making each block n bits long

• Every linear code can be represented in systematic

form

Message bits Parity bits

k

n

The entire block is

called the “code word

in systematic form”

n-k

6.02 Spring 2012 Lecture 4, Slide #7

Example: Rectangular Parity Codes

D1 D2

D3 D4

P3 P4

P1

P2

P1 is parity bit

for row #1

P4 is parity bit

for column #2

Idea: start with rectangular

array of data bits, add parity

checks for each row and

column. Single-bit error in

data will show up as parity

errors in a particular row

and column, pinpointing the

bit that has the error.

0 1 1

1 1 0

1 0

0 1 1

1 0 0

1 0

Parity for each row

and column is

correct  no errors

Parity check fails for

row #2 and column #2

 bit D4 is incorrect

0 1 1

1 1 1

1 0

Parity check only fails

for row #2

 bit P2 is incorrect

(n,k,d)=?

6.02 Spring 2012 Lecture 4, Slide #8

Rectangular Code Corrects Single Errors

Claim: The HD of the rectangular code with r rows

and c columns is 3. Hence, it is a single error

correction (SEC) code.

Code rate = rc / (rc + r + c).
D1 D2

D5 D6

P3

P5

P1

P2

D3 D4

D7 D8

D9 D10 D11 D12

P4 P7 P6

Proof: Three cases.

(1) Msgs with HD 1  differ in 1 row and 1 col parity

(2) Msgs with HD 2  differ in either row OR col or

both  HD >= 4 here.

(3) Msgs with HD 3 or more  systematic code so

differ in that many bits

If we add an overall parity bit P,
we get a (rc+r+c+1, rc, 4) code

Improves error detection but not

correction capability
P

2/21/2012

3

6.02 Spring 2012 Lecture 4, Slide #9

Decoding Rectangular Parity Codes

Receiver gets possibly corrupted word, w.

Calculates all the parity bits from the data bits.

If no parity errors, return rc bits of data.

Single row or column parity bit error  rc data

bits are fine, return them

If parity of row x and parity of column y are in

error, then the data bit in the (x,y) position is

wrong; flip it and return the rc data bits

All other parity errors are uncorrectable. Return

the data as-is, flag an “uncorrectable error”

6.02 Spring 2012 Lecture 4, Slide #10

Let’s do some rectangular parity decoding

1 0 1

0 1 0

0 1

Received codewords

1. Decoded message bits: ________________

0 0 0

1 1 1

1 1

0 0 1

0 1 0

0 0

D1 D2 P1

D3 D4 P2

P3 P4

2. Decoded message bits: ________________

3. Decoded message bits: ________________

1011

0011

0001

“uncorrectable”

P2 parity error

6.02 Spring 2012 Lecture 4, Slide #11

How Many Parity Bits Do We Really Need?

• We have n-k parity bits, which collectively can
represent 2n-k possibilities

• For single-bit error correction, parity bits need to
represent two sets of cases:

– Case 1: No error has occurred (1 possibility)

– Case 2: Exactly one of the code word bits has an
error (n possibilities, not k)

• So we need n+1 ≤ 2n-k

 n ≤ 2n-k – 1 (Hamming bound)

• Rectangular codes do not satisfy the equality

• Hamming codes correct single errors with this
minimum number of parity bits

 (7,4,3), … , (2m –1,2m -1-m,3)

6.02 Spring 2012 Lecture 4, Slide #12

Towards More Efficient Codes:
(7,4,3) Hamming Code Example

• Use multiple parity bits, each covering a

subset of the data bits.

• No two message bits belong to exactly the

same subsets, so a single-bit error will

generate a unique set of parity check errors.

D2

D1

D4

D3

P1 P2

P3

Suppose we check the

parity and discover that P1

and P3 indicate an error?

 bit D2 must have flipped

What if only P2 indicates

an error?

 P2 itself had the error! P1 = D1+D2+D4

P2 = D1+D3+D4

P3 = D2+D3+D4

Modulo-2

addition,

aka XOR

2/21/2012

4

6.02 Spring 2012 Lecture 4, Slide #13

Logic Behind Hamming Code Construction

• Idea: Use parity bits to cover each axis of the

binary vector space

– That way, all message bits will be covered with a unique

combination of parity bits

Index 1 2 3 4 5 6 7

Binary

index
001 010 011 100 101 110 111

(7,4)

code

P1 P2 D1 P3 D2 D3 D4

P1 = D1+D2+D4

P2 = D1+D3+D4

P3 = D2+D3+D4

P1 with binary index 001 covers

D1 with binary index 011

D2 with binary index 101

D4 with binary index 111

