
2/22/2012

1

6.02 Spring 2012 Lecture 5, Slide #1

6.02 Spring 2012

Lecture #4

•Linear block codes – Syndrome Decoding

•Handling bursts

6.02 Spring 2012 Lecture 5, Slide #2

Let’s do some rectangular parity decoding

1 0 1

0 1 0

0 1

Received codewords

1. Decoded message bits: ________________

0 0 0

1 1 1

1 1

0 0 1

0 1 0

0 0

D1 D2 P1

D3 D4 P2

P3 P4

2. Decoded message bits: ________________

3. Decoded message bits: ________________

1011

0011

0001

“uncorrectable”

P2 parity error

6.02 Spring 2012 Lecture 5, Slide #3

Towards More Efficient Codes:
(7,4,3) Hamming Code Example

• Use multiple parity bits, each covering a

subset of the data bits.

• No two message bits belong to exactly the

same subsets, so a single-bit error will

generate a unique set of parity check errors.

D2

D1

D4

D3

P1 P2

P3

Suppose we check the

parity and discover that P1

and P3 indicate an error?

 bit D2 must have flipped

What if only P2 indicates

an error?

 P2 itself had the error!

Modulo-2

addition,

aka XOR

P1 = D1+D2+D4

P2 = D1+D3+D4

P3 = D2+D3+D4

6.02 Spring 2012 Lecture 5, Slide #4

Logic Behind Hamming Code Construction

• Idea: Use parity bits to cover each axis of the

binary vector space

– That way, all message bits will be covered with a unique

combination of parity bits

Index 1 2 3 4 5 6 7

Binary

index
001 010 011 100 101 110 111

(7,4)

code

P1 P2 D1 P3 D2 D3 D4

P1 with binary index 001 covers

D1 with binary index 011

D2 with binary index 101

D4 with binary index 111

P1 = D1+D2+D4

P2 = D1+D3+D4

P3 = D2+D3+D4

2/22/2012

2

6.02 Spring 2012 Lecture , Slide #5

Syndrome Decoding: Idea

• After receiving the (possibly corrupted) message,

compute a syndrome bit (Ei) for each parity bit

• If all the Ei are zero: no errors

• Otherwise the particular combination of the E3E2E1

can be used to figure out which bit to correct

E1 = D1 + D2 + D4 + P1

E2 = D1 + D3 + D4 + P2

E3 = D2 + D3 + D4 + P3

Index 1 2 3 4 5 6 7

Binary

index
001 010 011 100 101 110 111

(7,4)

code

P1 P2 D1 P3 D2 D3 D4

P1 = D1+D2+D4

P2 = D1+D3+D4

P3 = D2+D3+D4

6.02 Spring 2012 Lecture , Slide #6

Matrix Notation for Linear Block Codes

Task: given k-bit message, compute n-bit codeword. We can

use standard matrix arithmetic (modulo 2) to do the job. For

example, here’s how we would describe the (9,4,4) rectangular

code that includes an overall parity bit.

 5432143214321

110101000

101100100

110010010

101010001

PPPPPDDDDDDDD

1×k

message

vector

1×n

code word

vector

k×n

generator

matrix

The generator matrix)(knkkkkxn AIG

xnkxnxk cGd 11
D1 D2

D3 D4

P3 P4

P1

P2

P5

6.02 Spring 2012 Lecture , Slide #7

Parity Check Matrix

Can restate the codeword

generation process as a

parity check

n×1

code word

vector

(transpose)

(n-k) x n

parity check

matrix

The parity check matrix,

15

5

4

3

2

1

4

3

2

1

0

100001111

010001010

001000101

000101100

000010011

x

P

P

P

P

P

D

D

D

D

01)(

T

xnxnkn cH

For (9,4,4) example

D1 D2

D3 D4

P3 P4

P1

P2

P5

6.02 Spring 2012 Lecture , Slide #8

Syndrome Decoding – Matrix Form

Task: given n-bit code word, compute (n-k) syndrome bits.

Again we can use matrix multiply to do the job.

(n-k) x 1

syndrome

vector
1)(1)(xkn

T

xnxnkn ErH

01)(

T

xnxnkn cH

xnxnxn ecr 111

1)(11)()(xkn

T

xnxnxnkn EecH

1)(1)(xkn

T

xnxnkn EeH

Knowing the error patterns we want to correct for, we can

compute Syndrome vectors offline and then do a lookup after

the Syndrome is calculated from a received word to find the

error type that occurred

received word

compute Syndromes

on receive word

use

To figure out the relationship of Syndromes to errors:

figure-out error type

from Syndrome

1 x n

error vector

2/22/2012

3

6.02 Spring 2012 Lecture , Slide #9

Syndrome Decoding – Steps

ErH

ii EeH

Step 1: For a given code and error patterns ei, precompute

Syndromes and store them

Step 2: For each received word,

compute the Syndrome

Step 3: Find l such that El == E and apply correction for error el

lerc

6.02 Spring 2012 Lecture , Slide #10

Spot Quiz: Hamming Syndrome Decoding

Find the error in the following received codeword

[D1 D2 D3 D4 P1 P2 P3] = [1 1 1 0 1 1 1]

Syndrome computation:

E1 = D1+D2+D4+P1

E2 = D1+D3+D4+P2

E3 = D2+D3+D4+P3

E1 = 1+1+0+1 = 1

E2 = 1+1+0+1 = 1

E3 = 1+1+0+1 = 1

6.02 Spring 2012 Lecture , Slide #11

Syndrome Decoding – Steps (9,4,4) example
Codeword generation:

Syndrome computation

for received word

1

1

0

0

1

0

0

0

0

0

1

1

0

1

100001111

010001010

001000101

000101100

000010011

 000001111

110101000

101100100

110010010

101010001

1111

 000000010

000001111000001101

Received word in error:

1

1

0

0

1

0

0

0

0

0

0

0

1

0

100001111

010001010

001000101

000101100

000010011

Precomputed Syndrome for

a given error pattern

6.02 Spring 2012 Lecture , Slide #12

Syndrome Decoding – Steps (9,4,4) example

Correction:

Since received word Syndrome [1 0 0 1 1]T matches the precomputed

Syndrome of the error [0 1 0 0 0 0 0 0 0],

apply this error to the received word to recover the original codeword

 000000010

000001101000001111

Corrected codeword

Received word

Error pattern from

matching Syndrome

2/22/2012

4

6.02 Spring 2012 Lecture , Slide #13

Linear Block Codes: Wrap-Up

• (n,k,d) codes have rate k/n and can correct up to

floor((d-1)/2) bit errors

• Code words are linear operations over message

bits: sum of any two code words is a code word

– Message + 1 parity bit: (n+1,n,2) code

• Good code rate, but only 1-bit error detection

– Replicating each bit c times is a (c,1,c) code

• Simple way to get great error correction; poor code rate

– Hamming single-error correcting codes are

(n, n-m, 3) where n = 2m - 1 for m > 1

• Adding an overall parity bit makes the code (n+1,n-p,4)

– Rectangular parity codes are (rc+r+c, rc, 3) codes

• Rate not as good as Hamming codes

• Syndrome decoding: general efficient approach for

decoding linear block codes
6.02 Spring 2012 Lecture , Slide #14

Burst Errors
Correcting single-bit errors is nice, but

in many situations errors come in

bursts many bits long (e.g., fading or

burst of interference on wireless

channel, damage to storage media

etc.). How does single-bit error

correction help with that?

P(pkt i was lost | pkt i-x was lost)

Note: P(pkt lost) ≈ s*P(bit error) where s = pkt size

Experiment on

802.11g network

(static and mobile)

6.02 Spring 2012 Lecture , Slide #15

Coping with Burst Errors by Interleaving

Well, can we think of a way to turn a B-bit error burst

into B single-bit errors?

B

Problem: Bits from a

particular codeword are

transmitted sequentially,

so a B-bit burst produces

multi-bit errors.

Solution: interleave bits

from B different codewords.

Now a B-bit burst produces

1-bit errors in B different

codewords.

Row-by-row

transmission

order

B
Col-by-col

transmission

order

6.02 Spring 2012 Lecture , Slide #16

Framing

• Looking at a received bit stream, how do we know
where a block of interleaved codewords begins?

• Physical indication (transmitter turns on,
beginning of disk sector, separate control channel)

• Place a unique bit pattern (frame sync sequence) in
the bit stream to mark start of a block
– Frame = sync pattern + interleaved code word block

– Search for sync pattern in bit stream to find start of frame

– Bit pattern can’t appear elsewhere in frame (otherwise our
search will get confused), so have to make sure no legal
combination of codeword bits can accidentally generate
the sync pattern (can be tricky…)

– Sync pattern can’t be protected by ECC, so errors may
cause us to lose a frame every now and then, a problem
that will need to be addressed at some higher level of the
communication protocol.

2/22/2012

5

6.02 Spring 2012 Lecture , Slide #17

Summary: example channel coding steps
1. Break message stream into k-bit

blocks.

2. Add redundant info in the form of

(n-k) parity bits to form n-bit

codeword. Goal: choose parity

bits so we can correct single-bit

errors, detect double-bit errors.

3. Interleave bits from a group of B

codewords to protect against B-

bit burst errors.

4. Add unique pattern of bits to

start of each interleaved

codeword block so receiver can

tell how to extract blocks from

received bitstream.

5. Send new (longer) bitstream to

transmitter.

011011101101

01101111

11100101

11010110

Step 2: (8,4,3) code

0110

1110

1101

Step 1: k=4

011111110001100111101110

Step 3: B = 3

011111001111011100011001111001110

Step 4: sync = 0111110

Sync pattern has five consecutive 1’s. To

prevent sync from appearing in message,

“bit-stuff” 0’s after any sequence of four

1’s in the message. This step is easily

reversed at receiver (just remove 0 after

any sequence of four consecutive 1’s in

the message).

6.02 Spring 2012 Lecture , Slide #18

Summary: example error correction steps
1. Search through received bit

stream for sync pattern,

extract interleaved codeword

block

2. De-interleave the bits to form

B n-bit codewords

3. Check parity bits in each code

word to see if an error has

occurred. If there’s a single-

bit error, correct it.

4. Extract k message bits from

each corrected codeword and

concatenate to form message

stream.

011111001111011100100001111001110

010 110 110

101 111 001

11 01 10

Step 3: (8,4,3) code

0110 1110 1101

Step 4

Step 1: sync = 0111110

011111110010000111101110

01100111

11110101

11000110

Step 2: B = 3, n = 8

