

INTRODUCTION TO EECS II

DIGITAL

COMMUNICATION SYSTEMS

6.02 Spring 2012

Lecture \#4

- Linear block codes - Syndrome Decoding
- Handling bursts

Towards More Efficient Codes:

$(7,4,3)$ Hamming Code Example

- Use multiple parity bits, each covering a subset of the data bits.
- No two message bits belong to exactly the same subsets, so a single-bit error will generate a unique set of parity check errors.

Let's do some rectangular parity decoding
Received codewords

1	0	1
0	1	0
0	1	

D1	D2	PI
D3	D4	P2
P3	P4	

1. Decoded message bits: \qquad

0	0	0
1	1	1
1	1	

2. Decoded message bits:

0011
P2 parity error

0	0	1
0	1	0
0	0	

3. Decoded message bits: \qquad
"uncorrectable"
6.02 Spring 2012

Lecture 5, Slide \#2

Logic Behind Hamming Code Construction

- Idea: Use parity bits to cover each axis of the binary vector space
- That way, all message bits will be covered with a unique combination of parity bits

Index	I	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Binary index	001	010	011	100	101	110	111
(7,4) code	P1	P2	D1	P3	D2	D3	D4

[^0]P_{1} with binary index 001 covers
D_{1} with binary index 011
D_{2} with binary index 101
D_{4} with binary index 111

Syndrome Decoding: Idea

- After receiving the (possibly corrupted) message, compute a syndrome bit $\left(\mathrm{E}_{\mathrm{i}}\right)$ for each parity bit

$$
\begin{array}{ll}
\mathrm{E}_{1}=\mathrm{D}_{1}+\mathrm{D}_{2}+\mathrm{D}_{4}+\mathrm{P}_{1} & \mathrm{P}_{1}=\mathrm{D}_{1}+\mathrm{D}_{2}+\mathrm{D}_{4} \\
\mathrm{E}_{2}=\mathrm{D}_{1}+\mathrm{D}_{3}+\mathrm{D}_{4}+\mathrm{P}_{2} & \mathrm{P}_{2}=\mathrm{D}_{1}+\mathrm{D}_{3}+\mathrm{D}_{4} \\
\mathrm{E}_{3}=\mathrm{D}_{2}+\mathrm{D}_{3}+\mathrm{D}_{4}+\mathrm{P}_{3} & \mathrm{P}_{3}=\mathrm{D}_{2}+\mathrm{D}_{3}+\mathrm{D}_{4}
\end{array}
$$

- If all the E_{i} are zero: no errors
- Otherwise the particular combination of the $\mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1}$ can be used to figure out which bit to correct

Index	1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Binary index	001	010	011	100	101	110	111
$(7,4)$ code	P1	P2	D1	P3	D2	D3	D4

$E_{3} E_{2} E_{1}$ Corrective Action | 000 | no errors |
| :--- | :--- |
| 001 | p_{1} has an error, flip to correct | $010 \quad p_{2}$ has an error, flip to correct 011 d has an error, flip to correct $100 \quad p_{3}$ has an error, flip to correct | 101 | d_{2} has an error, flip to correct |
| :--- | :--- |
| 110 | d_{3} has an error, flip to correct | 111 dat has an error, flip to correct

Matrix Notation for Linear Block Codes

Task: given \mathbf{k}-bit message, compute \mathbf{n}-bit codeword. We can use standard matrix arithmetic (modulo 2) to do the job. For example, here's how we would describe the $(\mathbf{9 , 4 , 4})$ rectangular code that includes an overall parity bit.

$$
d_{1 x k} \cdot G_{k x n}=c_{1 x n}
$$

The generator matrix

$$
G_{k x n}=\left\lfloor I_{k \times k} \mid A_{k \times(n-k)}\right\rfloor
$$

6.02 Spring 2012

Syndrome Decoding - Matrix Form

Task: given \mathbf{n}-bit code word, compute ($\mathbf{n}-\mathbf{k}$) syndrome bits. Again we can use matrix multiply to do the job.

$$
\begin{array}{lcc}
\text { received word } & r_{1 x n}=c_{1 x n}+e_{1 x n} & \begin{array}{c}
1 \times \mathrm{x} \\
\text { error vector } \\
(\mathrm{n}-\mathrm{k}) \mathrm{x} 1
\end{array} \\
\text { compute Syndromes } \\
\text { on receive word }
\end{array} \quad H_{(n-k) x n} \cdot r_{1 x n}^{T}=E_{(n-k) x 1} \begin{gathered}
\text { syndrome } \\
\text { vector }
\end{gathered}
$$

To figure out the relationship of Syndromes to errors

$$
\begin{gathered}
H_{(n-k) x n} \cdot\left(c_{1 x n}+e_{1 x n}\right)^{T}=E_{(n-k) x 1} \quad \text { use } \quad H_{(n-k) x n} \cdot c_{1 x n}^{T}=0 \\
H_{(n-k) x n} \cdot e_{1 x n}^{T}=E_{(n-k) x 1} \quad \begin{array}{l}
\text { figure-out error type } \\
\text { from Syndrome }
\end{array}
\end{gathered}
$$

Knowing the error patterns we want to correct for, we can compute Syndrome vectors offline and then do a lookup after the Syndrome is calculated from a received word to find the error type that occurred

Syndrome Decoding - Steps

Step 1: For a given code and error patterns $\mathbf{e}_{\mathbf{i}}$, precompute Syndromes and store them

$$
H \cdot e_{i}=E_{i}
$$

Step 2: For each received word, $\quad H \cdot r=E$ compute the Syndrome

Step 3: Find \boldsymbol{l} such that $\boldsymbol{E}_{\boldsymbol{l}}=\boldsymbol{=}$ and apply correction for error $\mathbf{e}_{\boldsymbol{l}}$

$$
c=r+e_{l}
$$

6.02 Spring 2012

Syndrome Decoding - Steps $(9,4,4)$ example

Codeword generation:

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1
\end{array}\right] \cdot\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Received word in error:

Spot Quiz: Hamming Syndrome Decoding

Find the error in the following received codeword
$[\mathrm{D} 1 \mathrm{D} 2 \mathrm{D} 3 \mathrm{D} 4 \mathrm{P} 1 \mathrm{P} 2 \mathrm{P} 3]=\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 1 & 1 & 1\end{array}\right]$

Syndrome Decoding - Steps $(9,4,4)$ example

Correction:
Since received word Syndrome $\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right]^{\mathrm{T}}$ matches the precomputed Syndrome of the error [010000000],
apply this error to the received word to recover the original codeword

$\left.\begin{array}{rllllllll} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{array}\right]=\left[\begin{array}{lllllllll} 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{array}\right]++$	
Corrected codeword	\uparrow
	Error pattern from matching Syndrome

Linear Block Codes: Wrap-Up

- ($\mathrm{n}, \mathrm{k}, \mathrm{d}$) codes have rate k / n and can correct up to floor((d-1)/2) bit errors
- Code words are linear operations over message bits: sum of any two code words is a code word - Message +1 parity bit: $(\mathrm{n}+1, \mathrm{n}, 2)$ code
- Good code rate, but only 1 -bit error detection
- Replicating each bit c times is a ($\mathrm{c}, 1, \mathrm{c}$) code
- Simple way to get great error correction; poor code rate
- Hamming single-error correcting codes are
$\left(\mathrm{n}, \mathrm{n}-\mathrm{m}, 3\right.$) where $\mathrm{n}=2^{\mathrm{m}}-1$ for $\mathrm{m}>1$
- Adding an overall parity bit makes the code ($\mathrm{n}+1, \mathrm{n}-\mathrm{p}, 4$)
- Rectangular parity codes are (rc+r+c, rc, 3) codes
- Rate not as good as Hamming codes
- Syndrome decoding: general efficient approach for decoding linear block codes
6.02 Spring 2012

Lecture, Slide \#13

Correcting single-bit errors is nice, but in many situations errors come in bursts many bits long (e.g., fading or
burst of interference on wireless burst of interference on wireless etc.) How does single-bit error correction help with that?

Experiment on 802.11 g network (static and mobile)

Framing

- Looking at a received bit stream, how do we know where a block of interleaved codewords begins?
- Physical indication (transmitter turns on,
beginning of disk sector, separate control channel)
- Place a unique bit pattern (frame sync sequence) in the bit stream to mark start of a block
- Frame = sync pattern + interleaved code word block
- Search for sync pattern in bit stream to find start of frame
- Bit pattern can't appear elsewhere in frame (otherwise our search will get confused), so have to make sure no legal combination of codeword bits can accidentally generate the sync pattern (can be tricky...)
- Sync pattern can't be protected by ECC, so errors may cause us to lose a frame every now and then, a problem that will need to be addressed at some higher level of the communication protocol.

Summary: example channel coding steps

1. Break message stream into k -bit blocks.
2. Add redundant info in the form of ($\mathrm{n}-\mathrm{k}$) parity bits to form n -bit codeword. Goal: choose parity bits so we can correct single-bit errors, detect double-bit errors.
3. Interleave bits from a group of B codewords to protect against Bbit burst errors.
4. Add unique pattern of bits to start of each interleaved codeword block so receiver can tell how to extract blocks from received bitstream.
5. Send new (longer) bitstream to transmitter.

Sync pattern has five consecutive 1's. To prevent sync from appearing in message, "bit-stuff" 0 's after any sequence of four 1 's in the message. This step is easily any sequence of four consecutive 1 's in the message).

Itep 1: k=4 0110
1110 1110
1101
Step 2: $(8,4,3)$ code 0110
1110
110101

- Step 3: B=3
Step 4: sync = 0111110

Lecture, Slide \#17

Summary: example error correction steps

1. Search through received bit stream for sync pattern, extract interleaved codeword block
2. De-interleave the bits to form B n-bit codewords
3. Check parity bits in each code word to see if an error has occurred. If there's a singlebit error, correct it.
4. Extract k message bits from each corrected codeword and concatenate to form message stream.

[^0]: $\mathrm{P}_{1}=\mathrm{D}_{1}+\mathrm{D}_{2}+\mathrm{D}_{4}$
 $\mathrm{P}_{2}=\mathrm{D}_{1}+\mathrm{D}_{3}+\mathrm{D}_{4}$
 $\mathrm{P}_{3}=\mathrm{D}_{2}+\mathrm{D}_{3}+\mathrm{D}_{4}$

