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6.02 Spring 2012 

Lecture #4 

•Linear block codes – Syndrome Decoding 

•Handling bursts 
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Let’s do some rectangular parity decoding 

1 0 1 

0 1 0 

0 1 

Received codewords 

1. Decoded message bits: ________________ 

0 0 0 

1 1 1 

1 1 

0 0 1 

0 1 0 

0 0 

D1 D2 P1 

D3 D4 P2 

P3 P4 

2. Decoded message bits: ________________ 

3. Decoded message bits: ________________ 

1011 

0011 

0001 

“uncorrectable” 

P2 parity error 
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Towards More Efficient Codes:  
(7,4,3) Hamming Code Example 

• Use multiple parity bits, each covering a 

subset of the data bits. 

• No two message bits belong to exactly the 

same subsets, so a single-bit error will 

generate a unique set of parity check errors. 

D2 

D1 

D4 

D3 

P1 P2 

P3 

Suppose we check the 

parity and discover that P1 

and P3 indicate an error? 

    bit D2 must have flipped 

 

What if only P2 indicates 

an error? 

    P2 itself had the error! 

Modulo-2 

addition, 

aka XOR 

P1 = D1+D2+D4 

P2 = D1+D3+D4 

P3 = D2+D3+D4 
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Logic Behind Hamming Code Construction 

• Idea: Use parity bits to cover each axis of the 

binary vector space 

– That way, all message bits will be covered with a unique 

combination of parity bits 

 

Index 1 2 3 4 5 6 7 

Binary 

index 
001 010 011 100 101 110 111 

(7,4) 

code 

P1 P2 D1 P3 D2 D3 D4 

P1 with binary index 001 covers 

 

D1 with binary index 011 

D2 with binary index 101 

D4 with binary index 111 

 

P1 = D1+D2+D4 

P2 = D1+D3+D4 

P3 = D2+D3+D4 
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Syndrome Decoding: Idea 

• After receiving the (possibly corrupted) message, 

compute a syndrome bit (Ei) for each parity bit 

 

 

 

• If all the Ei are zero: no errors 

• Otherwise the particular combination of the E3E2E1 

can be used to figure out which bit to correct 

 

 

E1 = D1 + D2 + D4 + P1 

E2 = D1 + D3 + D4 + P2 

E3 = D2 + D3 + D4 + P3 

Index 1 2 3 4 5 6 7

Binary 

index
001 010 011 100 101 110 111

(7,4) 

code

P1 P2 D1 P3 D2 D3 D4

P1 = D1+D2+D4 

P2 = D1+D3+D4 

P3 = D2+D3+D4 
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Matrix Notation for Linear Block Codes 

Task: given k-bit message, compute n-bit codeword.  We can 

use standard matrix arithmetic (modulo 2) to do the job.  For 

example, here’s how we would describe the (9,4,4) rectangular 

code that includes an overall parity bit. 

   5432143214321

110101000

101100100

110010010

101010001

PPPPPDDDDDDDD 





















1×k 

message 

vector 

1×n 

code word 

vector 

k×n 

generator

matrix 

The generator matrix  )( knkkkkxn AIG 

xnkxnxk cGd 11 
D1 D2

D3 D4

P3 P4

P1

P2

P5
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Parity Check Matrix 

Can restate the codeword 

generation process as a 

parity check 

n×1 

code word 

vector 

(transpose) 

(n-k) x n 

parity check 

matrix 

The parity check matrix,  
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1

0

100001111

010001010

001000101

000101100

000010011
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xnxnkn cH

For (9,4,4) example 

D1 D2

D3 D4

P3 P4

P1

P2

P5
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Syndrome Decoding – Matrix Form 

Task: given n-bit code word, compute (n-k) syndrome bits.  

Again we can use matrix multiply to do the job.   

(n-k) x 1 

syndrome 

vector 
1)(1)( xkn

T

xnxnkn ErH  

01)( 

T

xnxnkn cH

xnxnxn ecr 111 

1)(11)( )( xkn

T

xnxnxnkn EecH  

1)(1)( xkn

T

xnxnkn EeH  

Knowing the error patterns we want to correct for, we can 

compute Syndrome vectors offline and then do a lookup after 

the Syndrome is calculated from a received word to find the 

error type that occurred  

received word 

compute Syndromes  

on receive word 

use 

To figure out the relationship of Syndromes to errors: 

figure-out error type 

from Syndrome 

1 x n 

error vector 
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Syndrome Decoding – Steps 

ErH 

ii EeH 

Step 1: For a given code and error patterns ei, precompute  

Syndromes and store them 

Step 2: For each received word, 

compute the Syndrome 

Step 3: Find l such that El == E and apply correction for error el 

lerc 
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Spot Quiz: Hamming Syndrome Decoding 

Find the error in the following received codeword 

     

[D1 D2 D3 D4 P1 P2 P3] =  [1 1 1 0 1 1 1] 

 

 

 

 

 

Syndrome computation: 

E1 = D1+D2+D4+P1 

E2 = D1+D3+D4+P2 

E3 = D2+D3+D4+P3 

E1 = 1+1+0+1 = 1 

E2 = 1+1+0+1 = 1 

E3 = 1+1+0+1 = 1 
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Syndrome Decoding – Steps (9,4,4) example 
Codeword generation: 

Syndrome computation  

for received word 



















































































1

1

0

0

1

0

0

0

0

0

1

1

0

1

100001111

010001010

001000101

000101100

000010011

   000001111

110101000

101100100

110010010

101010001

1111 





















   
 000000010

000001111000001101 

Received word in error: 



















































































1

1

0

0

1

0

0

0

0

0

0

0

1

0

100001111

010001010

001000101

000101100

000010011

Precomputed Syndrome for  

a given error pattern 
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Syndrome Decoding – Steps (9,4,4) example 

Correction: 

 

Since received word Syndrome [1 0 0 1 1]T matches the precomputed  

Syndrome of the error [0 1 0 0 0 0 0 0 0],  

apply this error to the received word to recover the original codeword 

   
 000000010

000001101000001111 

Corrected codeword 

Received word 

Error pattern from  

matching Syndrome 
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Linear Block Codes: Wrap-Up 

• (n,k,d) codes have rate k/n and can correct up to 

floor((d-1)/2) bit errors 

• Code words are linear operations over message 

bits: sum of any two code words is a code word 

– Message + 1 parity bit: (n+1,n,2) code 

• Good code rate, but only 1-bit error detection 

– Replicating each bit c times is a (c,1,c) code 

• Simple way to get great error correction; poor code rate 

– Hamming single-error correcting codes are  

(n, n-m, 3) where n = 2m - 1 for m > 1 

• Adding an overall parity bit makes the code (n+1,n-p,4) 

– Rectangular parity codes are (rc+r+c, rc, 3) codes 

• Rate not as good as Hamming codes 

• Syndrome decoding: general efficient approach for 

decoding linear block codes 
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Burst Errors 
Correcting single-bit errors is nice, but 

in many situations errors come in 

bursts many bits long (e.g., fading or 

burst of interference on wireless 

channel, damage to storage media 

etc.).  How does single-bit error 

correction help with that? 

P(pkt i was lost | pkt i-x was lost) 

Note: P(pkt lost) ≈ s*P(bit error) where s = pkt size 

Experiment on 

802.11g network 

(static and mobile) 
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Coping with Burst Errors by Interleaving 

Well, can we think of a way to turn a B-bit error burst 

into B single-bit errors? 

B 

Problem: Bits from a 

particular codeword are 

transmitted sequentially, 

so a B-bit burst produces 

multi-bit errors. 

Solution: interleave bits 

from B different codewords.  

Now a B-bit burst produces 

1-bit errors in B different 

codewords. 

Row-by-row 

transmission 

order 

B 
Col-by-col 

transmission 

order 
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Framing 

• Looking at a received bit stream, how do we know 
where a block of interleaved codewords begins? 

• Physical indication (transmitter turns on, 
beginning of disk sector, separate control channel) 

• Place a unique bit pattern (frame sync sequence) in 
the bit stream to mark start of a block 
– Frame = sync pattern + interleaved code word block 

– Search for sync pattern in bit stream to find start of frame 

– Bit pattern can’t appear elsewhere in frame (otherwise our 
search will get confused), so have to make sure no legal 
combination of codeword bits can accidentally generate 
the sync pattern (can be tricky…) 

– Sync pattern can’t be protected by ECC, so errors may 
cause us to lose a frame every now and then, a problem 
that will need to be addressed at some higher level of the 
communication protocol. 
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Summary: example channel coding steps 
1. Break message stream into k-bit 

blocks. 

2. Add redundant info in the form of 

(n-k) parity bits to form n-bit 

codeword.  Goal: choose parity 

bits so we can correct single-bit 

errors, detect double-bit errors. 

3. Interleave bits from a group of B 

codewords to protect against B-

bit burst errors. 

4. Add unique pattern of bits to 

start of each interleaved 

codeword block so receiver can 

tell how to extract blocks from 

received bitstream. 

5. Send new (longer) bitstream to 

transmitter. 

011011101101 

01101111 

11100101 

11010110 

Step 2: (8,4,3) code 

0110 

1110 

1101 

Step 1: k=4 

011111110001100111101110 

Step 3: B = 3 

011111001111011100011001111001110 

Step 4: sync = 0111110 

Sync pattern has five consecutive 1’s.  To 

prevent sync from appearing in message, 

“bit-stuff” 0’s after any sequence of four 

1’s in the message.  This step is easily 

reversed at receiver (just remove 0 after 

any sequence of four consecutive 1’s in 

the message). 

6.02 Spring 2012 Lecture , Slide #18 

Summary: example error correction steps 
1. Search through received bit 

stream for sync pattern, 

extract interleaved codeword 

block 

2. De-interleave the bits to form 

B n-bit codewords 

3. Check parity bits in each code 

word to see if an error has 

occurred.  If there’s a single-

bit error, correct it. 

4. Extract k message bits from 

each corrected codeword and 

concatenate to form message 

stream. 

 

011111001111011100100001111001110 

010   110   110 

101   111   001 

11    01    10 

Step 3: (8,4,3) code 

0110 1110 1101 

Step 4 

Step 1: sync = 0111110 

011111110010000111101110 

01100111 

11110101 

11000110 

Step 2: B = 3, n = 8 


