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6.02 Spring 2012 

Lecture #8 

• Noise: bad things happen to good signals! 

• Additive white Gaussian noise (AWGN) 

• Bit error rate analysis 

• Signal-to-noise ratio and decibel (dB) scale 

• Binary symmetric channel (BSC) abstraction 
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Noise on a Communication Channel 
The net noise observed at the receiver is often the sum of many 

small, independent random contributions from many factors.  

If these independent random variables have finite mean and 

variance, the Central Limit Theorem says their sum will be a 

Gaussian. 

 

The figure below shows the histograms of the results of 10,000 

trials of summing 100 random samples draw from [-1,1] using 

two different distributions. 
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The Gaussian Distribution 

A Gaussian distribution 

with mean μ and variance 

σ2 has a PDF described by 
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From Histogram to PDF 

Experiment: create histograms 

of sample values from trials of 

increasing lengths. 

 

If distribution is stationary, 

then histogram converges to a 

shape known as a probability 

density function (PDF) 
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Estimating noise 

• Transmit a sequence of “0” bits, i.e., hold the 

voltage V0 at the transmitter 

• Observe received samples y[k], k = 0, 1, . . . , K − 1 

– Process these samples to obtain the statistics of the noise 

process for additive noise. Under the assumption of no 

distortion, and constant (or “stationary”) noise statistics, 

• Noise samples w[k] = y[k] − V0 

• For large K, can use the sample mean m to 

estimate µ, where 
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Cumulative Distribution Function 

When analyzing the effects of noise, we’ll often want to determine 

the probability that the noise is larger or smaller than a given 

value x0.  

Where Φμ,σ(x) is the cumulative distribution 

function (CDF) for the normal distribution 

with mean μ and variance σ2.  The CDF for 

the unit normal is usually written as just 

Φ(x). 
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Φ(x) = CDF for Unit Normal PDF 

For Python hackers: 

from math import sqrt 

from scipy.special import erf 

 

# CDF for Normal PDF 

def Phi(x,mu=0,sigma=1): 

  t = erf((x-mu)/(sigma*sqrt(2))) 

  return 0.5 + 0.5*t 
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Most math libraries don’t 

provide Φ(x) but they do have 

a related function, erf(x), the 

error function: 
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CDF and erfc 
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p(bit error) 
Now assume the channel has Gaussian noise with μ=0 and 

variance σ2.  And we’ll assume a digitization threshold of 0.5V.  

We can calculate the probability that noise[k] is large enough 

that y[k] = ynf[k] + noise[k] is received incorrectly: 

p(error | transmitted “0”): 

0 

σ 

0.5 

1-Φμ,σ(0.5) = Φμ,σ(-0.5) 

= Φ((-0.5-0)/σ) 
= Φ(-0.5/σ) 

p(error | transmitted “1”): 

0.5 1 

σ 

Φμ,σ(0.5) 

= Φ((0.5-1)/σ) 
= Φ(-0.5/σ) 

p(bit error) = p(transmit “0”)*p(error | transmitted “0”) + 

p(transmit “1”)*p(error | transmitted “1”) 

                 = 0.5*Φ(-0.5/σ) + 0.5*Φ(-0.5/σ) 

                 = Φ(-0.5/σ)  

Plots of noise-free voltage 

+ Gaussian noise 
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Bit Error Rate for Simple Binary Signaling Scheme 

0.5 erfc(sqrt (Es/N0)) 

http://www.dsplog.com/2007/08/05/bit-error-probability-for-bpsk-modulation/ 

Es/No, dB 
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Signal-to-Noise Ratio (SNR) 

The Signal-to-Noise ratio (SNR) is useful in 

judging the impact of noise on system 

performance: 

SNR is often measured in decibels (dB): 
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SNR Example 

Changing the amplification factor 

(gain) A leads to different SNR values: 

• Lower A → lower SNR 

• Signal quality degrades with 

lower SNR 
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Connecting the SNR and BER 
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BER vs. SNR 

For Vp=0.5, we calculate the 

power of the noise-free signal to 

be 0.25 and the power of the 

Gaussian noise is its variance, 

so 

Given an SNR, we can use the 

formula above to compute σ2 

and then plug that into the 

formula on the previous slide 

to compute p(bit error) = BER. 

 

The BER result is plotted to the 

right for various SNR values. 
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Spot quiz 

0 0.5 -0.25 0.25 1 

Given Vt     0.25, find: 

 

 

“0” sample 

distribution “1” sample 

distribution 

Vt 

x 

px 
p(“0”)=p(“1”)=0.5 



P(1 received | 0 sent) = 2*(0.25 – Vt) 

P(0 received | 1 sent) = 1*(Vt-0)=Vt 

P(error) = 0.5*2*(0.25-Vt)+0.5*Vt =0.25-0.5*Vt 

Value of Vt that minimizes P(error): Vt= 0.25 

Value of min P(error): P(error) min= 0.25*0.5 = 0.125 
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Formalizing the PDF Concept 

Define x as a random 

variable whose PDF has 

the same shape as the 

histogram we just 

obtained. 

 

Denote the PDF of x as 

fx(x) and scale fx(x) such 

that its overall area is 

1: 
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Formalizing Probability 

The probability that random variable x takes on a value in the 

range of x1 to x2 is calculated from the PDF of x as: 

A PDF is NOT a probability – its integral is. 

Note that probability values are always in the range of 0 to 1.  
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Mean and Variance 

The mean of a random variable x, μx, corresponds to its average 

value and computed as: 

The variance of a random variable x, σx
2, gives an indication of 

its variability and is computed as: 
Compare with 

power calculation 
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Visualizing Mean and Variance 

Changes in mean shift the 

center of mass of PDF 

Changes in variance narrow 

or broaden the PDF (but 

area is always equal to 1) 
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Example Probability Calculation 

This shape is 

referred to as a 

uniform PDF. 

Verify that overall area is 1: 

Probability that x takes on a value between 0.5 and 1: 
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Example Mean and Variance Calculation 

Mean: 

Variance: 


