

## INTRODUCTION TO EBCS II DIGITAL COMMUNICATION SYSTEMS

#### 6.02 Spring 2012 Lecture #10

- Input/output descriptions of systems
- Linear time-invariant (LTI) systems
- · Constructing LTI system responses to input signals

6.02 Spring 2012

Lecture 10, Slide #1



From Bits to Modulated Signal,

6.02 Spring 20

Lecture 10, Slide #2



**y[n] = (z[n]+...+z[n-L])/(L+1)**, L+1 length of the averaging filter

For L+1=8,  $2\Omega_c$  component is at  $2\pi/8$ , which is 8 samples per cycle

So, the  $\Sigma \cos(2\pi/8*(n\text{-}k))=0$  for k=0,...,L and the  $2\Omega_c$  gets integrated out\*

 $*~2\Omega_{\rm c}$  component gets integrated out in regions where x[n] is constant for L+1 samples. At transitions, there is a bit of degradation, but we make decisions on the middle samples

Lecture 10, Slide #3







Need to learn a bit more about Linear Time Invariant (LTI)  $_{\rm 10,\,Slide\,\#}$  systems to design a better filter!

**Time Invariant Systems** 

→ y[n-D]

Let y[.] be the response of S to input x[.]

x[n-D]-

time shift of the output sequence.

If for all possible sequences x[n] and integers D

S

then system S is said to be time invariant (TI). A time

shift in the input sequence to S results in an identical

# Filter design: System Input and Output



A discrete-time signal such as x[n] or y[n] is described by an infinite sequence of values, i.e., the time index n takes values in  $-\infty$  to  $+\infty$ . The above picture is a snapshot at a particular time n.

In the diagram above, the sequence of *output* values y[.] is the *response* of system S to the *input* sequence x[.]

# 6.02 Spring 2012

Lecture 10, Slide #7

Lecture 10, Slide #8

# Linear Systems

Let  $y_1[.]$  be the response of S to input  $x_1[.],$  and  $y_2[.]$  be the response to  $x_2[.]$ 

If the response to linear combinations of these two inputs equals the same linear combination of the individual responses, then system S is said to be *linear*.

$$a_1x_1[n] + a_2x_2[n] \longrightarrow S \longrightarrow a_1y_1[n] + a_2y_2[n]$$

If the input is the weighted sum of several signals, the response is the corresponding *superposition* (i.e., weighted sum with same weights) of the response to those signals.

6.02 Spring 2012

Lecture 10, Slide #9

#### Unit Step

A simple but useful discrete-time signal is the  $\mathit{unit step}$  signal or function, u[n], defined as



6.02 Spring 2012

Lecture 10, Slide #10

#### **Unit Sample**

Another simple but useful discrete-time signal is the unit sample signal or function,  $\delta[n],$  defined as



Unit Sample

Another simple but useful discrete-time signal is the unit sample signal or function,  $\delta[n],$  defined as



## Unit Sample Response & Unit Step Response



The unit sample response of a system S is the response of the system to the unit sample input. We will typically denote the unit sample response as h[n].



6.02 Spring 2012

Lecture 10, Slide #1

# Relating h[n] and s[n] of an LTI System





#### Unit Step Decomposition

"Rectangular-wave" digital signaling waveforms, of the sort we have been considering, are easily decomposed into timeshifted, scaled unit steps --- each transition corresponds to another shifted, scaled unit step. e.g., if x[n] is the transmission of 1001110 using 4 samples/bit: x[n]



Lecture 10, Slide #

# ... so the corresponding response is



#### Note how we have invoked linearity and time invariance!

#### Let's apply to our averaging filter example ...

6.02 Spring 2012

Lecture 10, Slide #16

