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6.02 Spring 2012 

Lecture #10 

• Input/output descriptions of systems 

• Linear time-invariant (LTI) systems 

• Constructing LTI system responses to input signals 
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From Bits to Modulated Signal,  

and Back 

codeword  

bits in 

codeword  

bits out 

1001110101 DAC 

ADC 

NOISY & DISTORTING  ANALOG CHANNEL 

modulate 

1001110101 demodulate 

generate 

digitized  

symbols 

sample & 

threshold 

x[n] 

y[n] 

filter 

z[n] 

t[n] 

r[n]=t[n] 
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codeword 

bits in

1001110101 DAC

ADC

NOISY & DISTORTING  ANALOG CHANNEL

modulate

demodulate

generate

digitized 
symbols

filter

Averaging filter 

Wc =2p/16 

16 samples per cycle 

x[n] t[n] 

t[n] z[n] 
y[n] 

y[n] = (z[n]+…+z[n-L])/(L+1), L+1 length of the averaging filter 

 

For L+1=8, 2Wc component is at 2p/8, which is 8 samples per cycle 

 

So, the S cos(2p/8*(n-k)) = 0 for k=0,…,L and the 2Wc gets integrated out* 

 * 2Wc component gets integrated out in regions where x[n] is constant for L+1  

samples. At transitions, there is a bit of degradation, but we make decisions  

on the middle samples 
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Averaging filter in action 
)2cos(][5.0][5.0][ nnxnxnz cW=

residual error  

only at bit to  

bit transitions 

2Wc component 

before averaging 

2Wc component 

after averaging 
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Averaging filter in action 
)2cos(][5.0][5.0][ nnxnxnz cW=

residual error  

only at bit to  

bit transitions 

desired  

component 

before averaging 

desired  

component 

after averaging 
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Averaging filter in action 

+ 

= 

Need to learn a bit more about Linear Time Invariant (LTI) 

 systems to design a better filter! 

2Wc component 

after averaging 

 

 

Desired component  

after averaging 

 

 

 

 

 

Output of the  

averaging filter 
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Filter design: System Input and Output 

S x[n] y[n] 

input response 

A discrete-time signal such as x[n] or y[n] is described by 

an infinite sequence of values, i.e., the time index n takes 

values in −∞ to +∞. The above picture is a snapshot at a  

particular time n. 

 

In the diagram above, the sequence of output values y[.] is 

the response of system S to the input sequence x[.] 
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Let y[.] be the response of S to input x[.] 

 

If for all possible sequences x[n] and integers D 

 

 

 

 

 

 

then system S is said to be time invariant (TI).  A time 

shift in the input sequence to S results in an identical 

time shift of the output sequence. 

 

S y[n-D] x[n-D] 

Time Invariant Systems 
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Linear Systems 

Let y1[.] be the response of S to input x1[.], and y2[.] be 

the response to x2[.] 

 

If the response to linear combinations of these two 

inputs equals the same linear combination of the 

individual responses, then system S is said to be linear.  

 

 

 

 

 

S a1x1[n]+a2x2[n] a1y1[n]+a2y2[n]

If the input is the weighted sum of several signals, the 

response is the corresponding superposition (i.e., 

weighted sum with same weights) of the response to 

those signals. 
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Unit Step 

A simple but useful discrete-time signal is the unit step 

signal or function, u[n], defined as 
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Unit Sample 

Another simple but useful discrete-time signal is the unit 

sample signal or function, δ[n], defined as 
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Another simple but useful discrete-time signal is the unit 

sample signal or function, δ[n], defined as 

Unit Sample 

Note that standard algebraic operations on signals  

(e.g. subtraction, addition, scaling by a constant)  

are defined in the obvious way, instant by instant.  
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Unit Sample Response & Unit Step Response 

S δ[n] h[n] 

Unit sample signal Unit sample response 

The unit sample response of a system S is the response of 

the system to the unit sample input.  We will typically 

denote the unit sample response as h[n]. 

S u[n] s[n] 

Unit step signal Unit step response 

Similarly, the unit step response s[n]: 
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Relating h[n] and s[n] of an LTI System 

S u[n] s[n] 

Unit step signal Unit step response 

S δ[n] h[n] 

Unit sample signal Unit sample response 

from which it follows that 

 

(assuming                            , i.e., a causal* LTI system)  0,0][ = kks
*causal system has h[n]=0 and s[n]=0 for n<0. 
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Unit Step 

Decomposition 

“Rectangular-wave” digital 

signaling waveforms, of the sort 

we have been considering, are 

easily decomposed into time-

shifted, scaled unit steps --- each 

transition corresponds to another 

shifted, scaled unit step. 

 
e.g., if x[n] is the transmission of 

1001110 using 4 samples/bit: 
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… so the corresponding response is 

Note how we have invoked linearity and time invariance! 

 

Let’s apply to our averaging filter example ... 



3/12/2012 

5 

6.02 Spring 2012 Lecture 10, Slide #17 

Spot Quiz 

0.5 

1 

0 1 2 3 4 5 …    n 

Unit step response: s[n] 

1 

0 1 2 3 4 5 6 7 8 9   n 

x[n] 

S x[n] y[n] 

input response 

Find y[n]: 

 

1. Write x[n] as a function of  

unit steps 

x[n] = u[n-5] – u[n-8] 

 

2. Write y[n] as a function of  

unit step responses 

y[n] = s[n-5] – s[n-8] 

 

3. Draw y[n] 

0 

1 

0 1 2 3 4 5 6 7 8 9   n 

y[n] 

0 

0.5 


