

6.02 Spring 2012 Lecture \#12

- Convolution
- LTI System Interconnections
- Deconvolution

Choosing Samples/Bit

Given $\mathrm{h}[\mathrm{n}]$, you can use the eye diagram to pick the number of samples transmitted for each bit (N):

Reduce N until you reach the noise margin you feel is the minimum acceptable value.
6.02 Spring 2012

Convolution!

If system S is both linear and time-invariant (LTI), then we can use the unit sample response $\mathbf{h}[\mathbf{n}]$ to predict the response to any input waveform $\mathrm{x}[\mathrm{n}]$:

Sum of shifted, scaled unit sample

Indeed, the unit sample response $\mathrm{h}[\mathrm{n}]$ completely characterizes the LTI system S , so you often see

$$
\mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}[.] \longrightarrow \mathrm{y}[\mathrm{n}]
$$

$y[n]=(x * h)[n]$
Lecture 12, Slide \#4

To Convolve (but not to "Convolute"!)

$$
y[n]=\sum_{k=\infty}^{\infty} x[k] h[n-k]
$$

A simple graphical implementation:
Plot $\mathrm{x}[$.$] and \mathrm{h}[$.$] as a function of the dummy index$ (k or m above)

Flip (i.e., reverse) one signal in time, slide it right by n (slide left if n is -ve), take the dot.product with the other.

This yields the value of the convolution at the single time n.

Convolution example - Echo channel

Channels as LTI Systems

Many transmission channels can be effectively modeled as LTI systems. When modeling transmissions, there are few simplifications we can make:

- We'll call the time transmissions start $\mathrm{t}=0$; the signal before the start is 0 . So $\mathrm{x}[\mathrm{m}]=0$ for $\mathrm{m}<0$.
- Real-word channels are causal: the output at any time depends on values of the input at only the present and past times. So $\mathrm{h}[\mathrm{m}]=0$ for $\mathrm{m}<0$.

Convolution example - Echo channel

$\begin{aligned} \mathrm{y}[2] & =\mathrm{x}[0] \mathrm{h}_{1}[3]+\mathrm{x}[1] \mathrm{h}_{1}[2]+\mathrm{x}[3] \mathrm{h}_{1}[0] \\ & =0+0.8+0=0.8\end{aligned}$

6.02 Spring 2012

Lecture 12, Slide \#8

Properties of Convolution

$$
(x * h)[n] \equiv \sum_{k=\infty}^{\infty} x[k] h[n-k]=\sum_{m=\infty}^{\infty} h[m] x[n-m]
$$

The second equality above, which follows from the simple change of variables $\mathbf{n} \mathbf{- k}=\mathbf{m}$, establishes that convolution is commutative:
$x * h=h * x$
Convolution is associative:

$$
h_{2} *\left(h_{1} * x\right)=\left(h_{2} * h_{1}\right) * x
$$

Convolution is distributive:

$$
\left(h_{1}+h_{2}\right) * x=\left(h_{1} * x\right)+\left(h_{2} * x\right)
$$

Parallel Interconnection of LTI Systems

$y=y_{1}+y_{2}=\left(h_{1} * x\right)+\left(h_{2} * x\right)=\left(h_{1}+h_{2}\right) * x$

$$
\mathrm{x}[\mathrm{n}] \longrightarrow\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right)[\cdot] \longrightarrow \mathrm{y}[\mathrm{n}]
$$

Series Interconnection of LTI Systems

$$
\begin{aligned}
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{1}[\cdot] \xrightarrow{\mathrm{w}[\mathrm{n}]} \xrightarrow{\mathrm{h}_{2}[\cdot]} \longrightarrow \mathrm{y}[\mathrm{n}] \\
& y=h_{2} * w=h_{2} *\left(h_{1} * x\right)=\left(h_{2} * h_{1}\right) * x=\left(h_{1} * h_{2}\right) * x \\
& \mathrm{x}[\mathrm{n}] \longrightarrow \quad\left(\mathrm{h}_{1} * \mathrm{~h}_{2}\right)[\cdot] \longrightarrow \mathrm{y}[\mathrm{n}] \\
& x[n] \longrightarrow \quad\left(h_{2} * h_{1}\right)[\cdot] \longrightarrow y[n] \\
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{2}[\cdot] \longrightarrow \mathrm{h}_{1}[\cdot] \longrightarrow \mathrm{y}[\mathrm{n}]
\end{aligned}
$$

"Deconvolving" Output of Channel with Echo

Suppose channel is LTI with

$$
\mathrm{h}_{1}[\mathrm{n}]=\delta[\mathrm{n}]+0.8 \delta[\mathrm{n}-1]
$$

Find $h_{2}[n]$ such that $z[n]=x[n]$

Good exercise in applying Flip/Slide/Dot.Product

Deconvolution example

Stability

What ensures that the infinite sum

$$
\text { is well-behaved? } y[n]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]
$$

One important case: If the unit sample response is absolutely summable, i.e.,

$\sum_{m=-\infty}^{\infty}|h[m]|<\infty$

and the input is bounded, i.e., $|x[k]| \leq M<\infty$
Under these conditions, the convolution sum is well-behaved, and the output is guaranteed to be bounded.

The absolute summability of $\mathrm{h}[\mathrm{n}]$ is necessary and sufficient for this bounded-input bounded-output (BIBO) stability.

[^0]Noise impact on Deconvolver

If $x[n]$

6.02 Spring 2012

Noise process at
receiver input

But if w[n]

Noise persists forever!!!

[^0]: 6.02 Spring 2012

