

6.02 Spring 2012 Lecture \#13

- Frequency Response of LTI systems - Building better filters

Complex Exponentials

$$
\begin{gathered}
e^{j \varphi}=\cos (\varphi)+j \sin (\varphi) \\
\cos (\varphi)=\frac{1}{2} e^{j \varphi}+\frac{1}{2} e^{-j \varphi} \quad \sin (\varphi)=\frac{1}{2 j} e^{j \varphi}-\frac{1}{2 j} e^{-j \varphi}
\end{gathered}
$$

In the complex plane, $e^{j \varphi}=\cos (\varphi)+j \sin (\varphi)$ is a point on the unit circle, at an angle of φ with respect to the positive real axis. Increasing φ by 2π brings you back to the same point! So any function of e^{j} only needs to be studied for φ in $[-\pi, \pi]$

Sinusoidal Inputs to LTI Systems

Sinusoidal inputs, i.e.,
$\mathrm{x}[\mathrm{n}]=\cos (\Omega \mathrm{n}+\theta)$
yield sinusoidal outputs at the same 'frequency' Ω rads.

Frequency Response

$$
\mathrm{Ae}^{\mathrm{j} \Omega \mathrm{n}} \longrightarrow \mathrm{~h}[\cdot] \longrightarrow \mathrm{y}[\mathrm{n}]
$$

Using the convolution sum we can compute the system's response to a complex exponential (of frequency Ω) as input:

$$
\begin{aligned}
y[n] & =\sum_{m} h[m] x[n-m] \\
& =\sum_{m}^{m} h[m] A e^{j(n-m)} \\
& =\left(\sum_{m}^{m} h[m] e^{-\rho m m}\right) A e^{i(n)} \\
& =H(\Omega) \cdot x[n]
\end{aligned}
$$

where we've defined the frequency response of the system as

$$
H(\Omega) \equiv \sum h[m] e^{-j \Omega m}
$$

This is an infinite sum in general, but is well behaved if $\mathrm{h}[$.$] is absolutely summable,$ i.e., if the system is stable

From Complex Exponentials to Sinusoids

$$
\cos (\Omega n)=\left(e^{j \Omega n}+e^{-j \Omega n)}\right) / 2
$$

So response to this cosine input is
$\left(H(\Omega) \mathrm{e}^{\mathrm{j} \Omega \mathrm{n}}+\mathrm{H}(-\Omega) \mathrm{e}^{-\mathrm{j} \Omega \mathrm{n})}\right) / 2=$ Real part of $\mathrm{H}(\Omega) \mathrm{e}^{\mathrm{j} \Omega \mathrm{n}}$
$=$ Real part of $|\mathrm{H}(\Omega)| \mathrm{e}^{\mathrm{j}(\Omega \mathrm{n}+<\mathrm{H}(\Omega))}$
$\cos \left(\Omega_{0} n\right) \longrightarrow \mathrm{H}(\Omega) \longrightarrow\left|\mathrm{H}\left(\Omega_{0}\right)\right| \cos \left(\Omega_{0} n+<\mathrm{H}\left(\Omega_{0}\right)\right)$

Example: Channel with Echo

Example: Channel with Echo

	$\mathrm{x}[\mathrm{n}]$	LTI Channel	$\mathrm{y}[\mathrm{n}]$
		$\mathrm{h}_{1}[\cdot]$	$<\mathrm{H}_{1}(\Omega)$
$\mathrm{h}_{1}[\mathrm{n}]=\delta[\mathrm{n}]+0.8 \delta[\mathrm{n}-1]$		[rad	
1	$\mathrm{H}_{1}(\Omega)=$?		
$\xrightarrow{\square}$	$H_{1}(\Omega)=$	$h_{1}[m] e^{-j \Omega m}$	
$\left.\mathrm{H}_{1}(\Omega)=\mathrm{h}_{1}[0]+\mathrm{h}_{1}[1] \mathrm{e}^{-\mathrm{j} \Omega}=1+0.8 \mathrm{e}^{-\mathrm{j} \Omega}=1+0.8 \cos (\Omega)-\mathrm{j} 0.8 \sin (\Omega){ }^{\Omega}\right]$			
So:			
$\left\|\mathrm{H}_{1}(\Omega)\right\|=[1.64+1.6 \cos (\Omega)]^{1 / 2}$			EVEN funct
$<\mathrm{H}_{1}(\Omega)=\arctan [-(0.8 \sin (\Omega) /[1+0.8 \cos (\Omega)]$			

$\mathrm{H}(\Omega)$ with Zeros

Hmm . A quadratic equation with two roots at $\Omega= \pm \varphi$:

$$
\begin{aligned}
& \left(e^{-j \Omega}-e^{-j \varphi}\right)\left(e^{-j \Omega}-e^{j \varphi}\right) \\
= & \left(e^{-j \Omega}\right)^{2}-\left(e^{j \varphi}+e^{-j \varphi}\right)\left(e^{-j \Omega}\right)+e^{j \varphi} e^{-j \varphi} \\
= & 1-2 \cos (\varphi)\left(e^{-j \Omega}\right)+\left(e^{-j \Omega}\right)^{2}
\end{aligned}
$$

Matching terms in the two equations, we see that this LTI system would have a frequency response that went to zero at $\pm \varphi$ if
6.02 Spring 2012 $\mathrm{h}[0]=1, \mathrm{~h}[1]=-2 \cos (\varphi)$ and $\mathrm{h}[2]=1$. \qquad

Series Interconnection of LTI Systems

From Lecture 12:

In the frequency domain (i.e., thinking about input-to-output frequency response):

6.02 Spring 2012

Frequency Response of "Moving Average" Filters

Lecture 13, Slide \#10

A 10-cent Low-pass Filter

Suppose we wanted a low-pass filter with a cutoff frequency of $\pi / 4$
6.02 Spring 2012

Lecture 13, Slide \#12

The $\$ 4.99$ version, $h[n]$ and $H(\Omega)$

$H(\Omega)=1|\Omega|<\Omega_{c}$,
$H(\Omega)=0 \quad \Omega_{c}<|\Omega| \leq \pi$
6.02 Spring 2012

$h[n]=\frac{1}{2 \pi} \int_{-\Omega_{c}}^{\Omega_{e}} e^{j \Omega n} d \Omega$
$=\left\{\begin{array}{cc}\frac{\sin \left(\Omega_{e} n\right)}{\pi n} & \text { for } n \neq 0 \\ \frac{\Omega}{\pi} & \text { for } n=0\end{array}\right.$
$H(\Omega)$ and $h[n]$ for some Useful Filters

6.02 Spring 2012
$h[n]$ and $H(\Omega)$ for some Idealized Channels

A Frequency-Domain view of Deconvolution

Given $H_{1}(\Omega)$, what should $H_{2}(\Omega)$ be, to get $z[n]=x[n]$?

$$
\begin{aligned}
\square \quad \mathrm{H}_{2}(\Omega) & =1 / \mathrm{H}_{1}(\Omega) \quad \text { "Inverse filter" } \\
& =\left(1 /\left|\mathrm{H}_{1}(\Omega)\right|\right) \cdot \exp \left\{-\mathrm{j}<\mathrm{H}_{1}(\Omega)\right\}
\end{aligned}
$$

Inverse filter at receiver does very badly in the presence of noise that adds to $y[n]$:
filter has high gain for noise precisely at frequencies where channel gain $\left|\mathrm{H}_{1}(\Omega)\right|$ is low (and channel output is weak)! 6.02 Spring 2012

