

INTRODUCTION TO BECS II DIGITAL COMMUNICATION SYSTEMS

6.02 Spring 2012 Lecture #13

Frequency Response of LTI systemsBuilding better filters

Sinusoidal Inputs to LTI Systems

Sinusoidal inputs, i.e.,

 $x[n] = cos(\Omega n + \theta)$

yield sinusoidal outputs at the same 'frequency' Ω rads.

6.02 Spring 2012

Lecture 13, Slide #1

.02 Spring 2012

Lecture 13, Slide #2

Complex Exponentials

$e^{j\varphi} = \cos(\varphi) + j\sin(\varphi)$

$$\cos(\varphi) = \frac{1}{2}e^{i\varphi} + \frac{1}{2}e^{-j\varphi}$$
 $\sin(\varphi) = \frac{1}{2j}e^{j\varphi} - \frac{1}{2j}e^{-j\varphi}$

In the complex plane, $e^{i\varphi} = \cos(\varphi) + j\sin(\varphi)$ is a point on the unit circle, at an angle of φ with respect to the positive real axis. Increasing φ by 2π brings you back to the same point! So any function of e^{ij} only needs to be studied for φ in $[-\pi, \pi]$.

6.02 Spring 2012

Frequency Response

 $Ae^{j\Omega n} \longrightarrow h[.] \longrightarrow y[n]$

Using the convolution sum we can compute the system's response to a complex exponential (of frequency Ω) as input:

 $y[n] = \sum h[m]x[n-m]$

$$=\sum h[m]Ae^{j\Omega(n-m)}$$

$$= \left(\sum_{m}^{m} h[m] e^{-j\Omega m}\right) A e^{j\Omega n}$$

 $=H(\Omega)\cdot x[n]$

where we've defined the *frequency response* of the system as

$H(\Omega) \equiv \sum h[m] e^{-j\Omega m}$

This is an infinite sum in general, but is well behaved if h[.] is absolutely summable, i.e., if the system is stable.

6.02 Spring 2012

Lecture 13, Slide #7

2

H(Ω) with Zeros

$H(\Omega) = \sum h[m]e^{-j\Omega m} = h[0]e^{-j\Omega 0} + h[1]e^{-j\Omega 1} + h[2]e^{-j\Omega 2}$

 $= \overset{-}{h[0]} + h[1](e^{-j\Omega}) + h[2](e^{-j\Omega})^2$ Hmm. A quadratic equation with two roots at $\Omega = \pm \varphi$: $(e^{-j\Omega} - e^{-j\varphi})(e^{-j\Omega} - e^{j\varphi})$

$$= (e^{-j\Omega})^2 - (e^{j\varphi} + e^{-j\varphi})(e^{-j\Omega}) + e^{j\varphi}e^{-j\varphi}$$

 $=1-2\cos(\varphi)(e^{-j\Omega})+(e^{-j\Omega})^2$

Matching terms in the two equations, we see that this LTI system would have a frequency response that went to zero at $\pm\phi$ if

 $h[0]=1, h[1]=-2\cos(\phi) \text{ and } h[2]=1.$ Lecture 13, Slide #9

Frequency Response of "Moving Average" Filters

.02 Spring 2012

Lecture 13, Slide #10

Series Interconnection of LTI Systems

From Lecture 12:

In the frequency domain (i.e., thinking about input-to-output frequency response):

A 10-cent Low-pass Filter

Suppose we wanted a low-pass filter with a cutoff frequency of $\pi/4$

The \$4.99 version, h[n] and $H(\Omega)$

$H(\Omega)$ and h[n] for some Useful Filters

6.02 Spring 2012

Lecture 13, Slide #14

h[n] and $H(\Omega)$ for some Idealized Channels

6.02 Spring 2012

Lecture 13, Slide #15

A Frequency-Domain view of Deconvolution

