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6.02 Spring 2012 

Lecture #14 

• Viewing signals in frequency domain 

• Discrete-time Fourier Series 
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U.S. Spectrum Allocation Map 

http://www.wireless-technology.org/wp-content/uploads/2011/02/Wireless-Spectrum-Photo.jpg 
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U.S. Spectrum Allocation Map 

http://www.wireless-technology.org/wp-content/uploads/2011/02/Wireless-Spectrum-Photo.jpg 

Wi-Fi 
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Multiple Transmitters:  

Frequency Division Multiplexing (FDM) 

× xB[n] 

× xR[n] 

× xG[n] 

+ 

Channel “performs addition” by 

superposing signals (“voltages”) from 

different frequency bands. 
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-kB -kR -kG kB kR kG 

Choose bandwidths and kc’s so as to 

avoid overlap!  Once signals combine 

at a given frequency, can’t be 

undone… 

cos(kBW1n) 

cos(kRW1n) 

cos(kGW1n) 
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Continuous and Discrete-time signals 
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P= Tp/Ts = 8 samples per period 

Continuous and Discrete-time signals 
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Continuous and Discrete-time signals 
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Spectrum of Digital Transmissions 
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Representing Periodic Signals in 

Frequency Domain 

Any strictly periodic DT signal of period P  

 

x[n+P]=x[n] for all n 

  

e.g., 6.sin((2πn/P)+0.17) + 4.cos(3(2πn/P)+0.82) 

 

can be written as  

a weighted combination (generally with complex weights) 

of P complex exponentials  

 

whose frequencies are  

consecutive integer multiples of the fundamental frequency 2π/P=W1 

(so each exponential term has period P) 

 

This is the 

Discrete-Time Fourier Series (DTFS) 

or discrete spectral representation. 
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Discrete-Time Fourier Series (DTFS) 
If x[n] is periodic with period P (convenient to assume P is even, so 

P/2 is integer, but odd P can be handled too), it can be expressed 

as the sum of P “spectral components” --- scaled complex 

exponentials of period P: Complex exponentials 

with fundamental 

frequency 2π/P = W1. 

Frequency of term k is 

Wk=kW1 . 

With the notation  

Ak=Xk/P, we get an  

alternate (and  

often used)  

normalization. 

k ranges over any P consecutive integers.  Common choices: 

• k for 0 to P–1 ; 0 ≤ kW1 ≤ 2π-W1 

• k for –(P/2) to (P/2)–1 for even P ; –π ≤ kW1 ≤ π–W1 

• k symmetrically out from 0 for odd P ; –π+(W1/2)≤ kW1 ≤ π–(W1/2) 
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Where do the Wk live?  

e.g., for P=6 (even) 

–π π 0 
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Where do the Wk live?  

e.g., for P=3 (odd) 

–π π 0 
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Consequence for Periodic Input to  

LTI System 

H(W) 

i.e., the frequency response tells us how the system will affect 

the spectral components in the periodic input. We know the 

output is periodic, and must have its own Fourier series, 

with coefficients Bk. So evidently 

are the spectral coefficients for y[n]. If we use the alternate  

normalization, Xk=AkP and Yk=BkP, then similarly 

We write Wk=kW1=k(2π/P),    to further  

simplify the notation; so W–k = –Wk  . 
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Determining the Fourier Series Coefficients 

Synthesis equation 

Analysis equation 
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Derivation of equation for Ak  

Start with: 

Multiply both sides by         and sum over P terms: 

= 0 if m-k ≠ 0, and  

= P if m=k 

6.02 Spring 2012 Lecture 14, Slide #16 

DTFS Properties 

• x[n] and Ak are both periodic with period P 

 

• If x[n] is real, A−k = Ak
* (i.e., they are complex conjugates) 

 

• A0 is the average of the x[n] over one period 

 

• AP/2 (for even P) is the average of (–1)nx[n] over one period 

 

• It takes P numbers to specify this periodic x[n], and it takes     

P numbers to specify its Fourier series coefficients    
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Let’s do it “by inspection”.  First 

rewrite x[n]: 

Now x[n] is a sum of complex 

exponentials and we can determine 

the Ak directly from the equation: 

P is odd here (=11), so the end  

points of the frequency scale  

are at ±(π– (π/P)), not ±π. 
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Again, by inspection: since the cos 

and sin are at different frequencies, 

we can analyze them separately. 

 

Again, P is odd here (=11), so the  

end points of the frequency scale  

are at ±(π– (π/P)), not ±π. 

 

A0 = average value = 1 

 

A±3 = 2(1/2) = 1       [from cos term] 
 

A-5 = –3(j/2) = –1.5j  [from sin term] 

A5  = –3(–j/2) = 1.5j  

 

Ak = 0   otherwise 
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The DTFS is also good for  

finite-duration signals! 

Claim: Over any contiguous interval of length P that we may be 

interested in --- say n=0,1,…,P–1 for concreteness --- an arbitrary  

DT signal x[n] can be written in the form 

What’s going on here? If we know we will only be interested in  

the interval [0,P–1], then it doesn’t matter that our  

representation above will create periodically repeating  

extensions outside the interval of interest.  
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Spectrum of Digital Transmissions 
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Application 

h[.] x[n] y[n] 

 

Suppose x[n] is nonzero only over the time interval [0 , nx], 

and h[n] is nonzero only over the time interval [0 , nh] .  

 

In what time interval can the non-zero values of y[n] be 

guaranteed to lie? The interval [0 , nx + nh] . 

Since all the action we are interested in is confined to this  

interval, choose P – 1 ≥ nx + nh , then use the DTFS to  

represent x[n] and y[n] over this interval.  

 

This is actually the much more common use of the DTFS! 
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The Need for Speed:  

Fast Fourier Transform (FFT) 

Computing these series involves O(P2) operations – when P gets 

large, the computations get very   s   l   o   w…. 

 

Happily, in 1965 Cooley and Tukey published a fast method for 

computing the Fourier transform (aka FFT, IFFT), rediscovering  

a technique known to Gauss.  This method takes O(P log P) 

operations. 

 
P = 1000,  P2 = 1000000,  P logP ≈ 10000 


