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More on modulation and demodulation, FDM
Effects of phase errors and channel delays

¢ Quadrature demodulation and more advanced
modulation formats

Ideal Modulation/Demodulation
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j-j=-1 so sign of A, flipped

Phase Error Math

Let’s derive an equation for z[n]:

z[n] =t[n]cos(Q,n— ) = X[n] cos(,n) cos(,n— )
But
€os(Q,n) cos(2,n— ) = 0.5(cos(2Q2,n— ) +cos(¢))

It follows that the demodulated output, after the LPF of
gain 2 and cutoff frequency< 2Q,, is

yIn] =x{n]cos(¢)

So a phase error of @ results in amplitude scaling by cos(@).

Note: in the extreme case where ¢=1/2, we are demodulating by
a sine rather than a cosine, and we get y[n]=0 .

Demodulation (sin) Frequency Diagram
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Demodulation with sin(k.Q;n)
t[n] z[n]

has the signal we want
sin(Q¢n) = sin(k Qn) at baseband!
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N_~ Oops, no baseband signal!

Demodulation (sin) Frequency Diagram
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Note combining of signals around 0
/\ results in cancellation!
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Channel Delay

Time delay of D samples

t[n] tp[n] z[n]
x[n]

Cutoff @ +k;,
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cos(Q.n)

Very similar math to the previous “phase error” case:
z[n] =t,[n]cos(Q;n) = t[n— D]cos(2,n)
= X[n— D]cos[Q, (n— D)]cos(©2,n)
=0.5x[n— D] cos(22,n — QD) +0.5x[n — D] cos(©2, D)
Passing this through the LPF:

Looks like a phase error

of QD
y[n]=x[n—D]cos(©2,D)

So a channel delay of D results in amplitude scaling by cos(Q.D)

Quadrature Demodulation

If we let

x[n-DJsin(8)

y[n] = I[n]+ jQ[n]

then x[n-DJcos(8)

|yIn]|= 1 [n]* +QInJ*
=| x[n—D]|cos? 8 +sin* &

Constellation diagrams
(bit decimated x[n-D]):
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on-off keying | |
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Fixing Phase Problems in the Receiver

So phase errors and channel delay both result in a scaling of the
output amplitude, where the magnitude of the scaling can’t
necessarily be determined at system design time:

* Channel delay varies on mobile devices

« Phase difference between transmitter and receiver is arbitrary

One solution: quadrature demodulation
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BPSK

In binary phase-shift keying (BPSK), the message bit
_; selects one of two phases for the carrier, e.g., /2 for
0 and -1/2 for 1.
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QPSK Modulation

We can use the quadrature scheme at the transmitter too:

Still need band limiting at transmitter

/\/
msg[0::2]
Even bits cos(Qcn)
sin(@Qun) tn]
msg[1::2]
A%
Odd bits

When mapping bits to voltage values, we should choose the
values so that the maximum amplitude of t[n] is 1. For QPSK
(also referred to as QAM-4) that would mean ( 11 J
—=,—= |=(.707,.707
NI ( )
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Dealing With Phase Ambiguity

BPSK is also subject phase changes introduced
by channel delays or phase difference between
xmit and rcv: the received constellation will be
. rotated with respect to the transmitter’s
constellation. Which phase corresponds to
which bit?

The fix? Think of the phase encoding as differential, not
absolute: a change in phase corresponds to a change in bit
value. Assume that, by convention, messages start with a single
0 bit, i.e., prepend a O to each to message. Then the first phase
change represents a 0—1 transition, the second phase change a
1—0 transition, and so on.

phase

QAM Modulation
Use more levels in each arm (e.g. 4 levels per arm — 16QAM):

Still need band limiting at transmitter

msg[0::4]

Even bits cos(Qcn)
sin(Qen)

msg[2::4]

Odd bits

Map bits into voltage value

Symbol/bits mapping table

00 -> -3A

01 ->-A

11-> A

10 -> 3A

Gray Code (noise movement into another constellation point
only causes single bit errors)
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