

INTRODUCTION TO EECS II
DIGITAL COMMUNICATION SYSTEMS

6.02 Fall 2011

Lecture \#16

- More on modulation and demodulation, FDM
- Effects of phase errors and channel delays
- Quadrature demodulation and more advanced modulation formats

Ideal Modulation/Demodulation

$\mathrm{x}[\mathrm{n}]$

$\mathrm{t}[\mathrm{n}]$

$z[n]$

$\mathrm{y}[\mathrm{n}]$

From Baseband to Modulated Signal, and Back

Phase Error in Demodulator

Phase Error Math

Let's derive an equation for $\mathrm{z}[\mathrm{n}]$:
$z[n]=t[n] \cos \left(\Omega_{c} n-\varphi\right)=x[n] \cos \left(\Omega_{c} n\right) \cos \left(\Omega_{c} n-\varphi\right)$
But
$\cos \left(\Omega_{c} n\right) \cos \left(\Omega_{c} n-\varphi\right)=0.5\left(\cos \left(2 \Omega_{c} n-\varphi\right)+\cos (\varphi)\right)$

It follows that the demodulated output, after the LPF of gain 2 and cutoff frequency $<2 \Omega_{\mathrm{c}}$, is

$$
y[n]=x[n] \cos (\varphi)
$$

So a phase error of φ results in amplitude scaling by $\cos (\varphi)$.
Note: in the extreme case where $\varphi=\pi / 2$, we are demodulating by a sine rather than a cosine, and we get $y[n]=0$.

Demodulation (sin) Frequency Diagram

$z[n]=t[n] \sin \left(k_{c} \Omega_{1} n\right)$

Demodulation with $\sin \left(k_{c} \Omega_{1} n\right)$

$$
\begin{aligned}
z[n] & =t[n]\left[-\frac{j}{2} e^{j k_{c} \Omega_{1} n}+\frac{j}{2} e^{-j k_{c} \Omega_{1} n}\right] \\
& =\left[\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k+k_{c}\right) \Omega_{1} n}+\frac{1}{2} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k-k_{c}\right) \Omega_{1} n}\right]\left[-\frac{j}{2} e^{j k_{c} \Omega_{1} n}+\frac{j}{2} e^{-j k_{c} \Omega_{1} n}\right] \\
& =-\frac{j}{4} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k+2 k_{c}\right) \Omega_{1} n}+\frac{j}{4} \sum_{k=-k_{x}}^{k_{x}} A_{k} e^{j\left(k-2 k_{c}\right) \Omega_{1} n}
\end{aligned}
$$

Demodulation (sin) Frequency Diagram

6.02 Spring 2012

Lecture 16, Slide \#8

Channel Delay

Very similar math to the previous "phase error" case:

$$
\begin{gathered}
z[n]=t_{D}[n] \cos \left(\Omega_{c} n\right)=t[n-D] \cos \left(\Omega_{c} n\right) \\
=x[n-D] \cos \left[\Omega_{c}(n-D)\right] \cos \left(\Omega_{c} n\right) \\
=0.5 x[n-D] \cos \left(2 \Omega_{c} n-\Omega_{c} D\right)+0.5 x[n-D] \cos \left(\Omega_{c} D\right)
\end{gathered}
$$

Passing this through the LPF:

$$
\sim_{\text {of } \Omega_{\mathrm{c}} \mathrm{D}}^{\text {Looks like a phase error }}
$$

$$
y[n]=x[n-D] \cos \left(\Omega_{c} D\right)
$$

So a channel delay of D results in amplitude scaling by $\cos \left(\Omega_{\mathrm{c}} D\right)$
6.02 Spring 2012

Fixing Phase Problems in the Receiver

So phase errors and channel delay both result in a scaling of the output amplitude, where the magnitude of the scaling can't necessarily be determined at system design time:

- Channel delay varies on mobile devices
- Phase difference between transmitter and receiver is arbitrary

One solution: quadrature demodulation

Quadrature Demodulation

If we let

$$
y[n]=I[n]+j Q[n]
$$

then

$$
\begin{aligned}
|y[n]| & =\sqrt{I[n]^{2}+Q[n]^{2}} \\
& =|x[n-D]| \sqrt{\cos ^{2} \theta+\sin ^{2} \theta} \\
& =|x[n-D]|
\end{aligned}
$$

OK for recovering $x[n]$ if it never goes negative, as in on-off keying
6.02 Spring 2012

Constellation diagrams (bit decimated $x[n-D]$):

Full system view

Alternative representation

BPSK

In binary phase-shift keying (BPSK), the message bit selects one of two phases for the carrier, e.g., $\pi / 2$ for 0 and $-\pi / 2$ for 1 .

QPSK Modulation

We can use the quadrature scheme at the transmitter too:

When mapping bits to voltage values, we should choose the values so that the maximum amplitude of $\mathrm{t}[\mathrm{n}]$ is 1 . For QPSK (also referred to as QAM-4) that would mean $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=(.707,707)$
6.02 Spring 2012

Lecture 16, Slide \#15

Dealing With Phase Ambiguity

BPSK is also subject phase changes introduced by channel delays or phase difference between xmit and rcv: the received constellation will be rotated with respect to the transmitter's constellation. Which phase corresponds to which bit?

The fix? Think of the phase encoding as differential, not absolute: a change in phase corresponds to a change in bit value. Assume that, by convention, messages start with a single 0 bit, i.e., prepend a 0 to each to message. Then the first phase change represents a $0 \rightarrow 1$ transition, the second phase change a $1 \rightarrow 0$ transition, and so on.

QAM Modulation

Use more levels in each arm (e.g. 4 levels per arm - 16QAM):

From Baseband to Modulated Signal, and Back

