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6.02 Fall 2011 

Lecture #16 

• More on modulation and demodulation, FDM 

• Effects of phase errors and channel delays 

• Quadrature demodulation and more advanced 

modulation formats  
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Ideal Modulation/Demodulation 
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Phase Error in Demodulator 
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Phase Error Math 

Let’s derive an equation for z[n]: 

)cos()cos(][)cos(][][ jj == nnnxnntnz ccc

)cos(][][ jnxny =

So a phase error of φ results in amplitude scaling by cos(φ). 

 

Note: in the extreme case where φ=π/2, we are demodulating by 

a sine rather than a cosine, and we get y[n]=0 . 

))cos()2(cos(5.0)cos()cos( jjj = nnn ccc

But  

It follows that the demodulated output, after the LPF of  

gain 2 and cutoff frequency< 2c, is  
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Demodulation with sin(kc1n)  

× t[n] z[n] 
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Oops, no baseband signal! 

Hmm.  So z[n] no longer 

has the signal we want 

at baseband! sin(Cn) = sin(kc1n) 
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Demodulation (sin) Frequency Diagram 
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Demodulation (sin) Frequency Diagram 
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Channel Delay 
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)cos(][)cos(][][ nDntnntnz ccD ==

Passing this through the LPF: 

)cos(][][ DDnxny c=

Looks like a phase error 

of cD  

cos(Ωcn) 

Very similar math to the previous “phase error” case: 

)cos()](cos[][ nDnDnx cc =

)cos(][5.0)2cos(][5.0 DDnxDnDnx ccc =

So a channel delay of D results in amplitude scaling by cos(ΩcD) 
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Fixing Phase Problems in the Receiver 

So phase errors and channel delay both result in a scaling of the 

output amplitude, where the magnitude of the scaling can’t 

necessarily be determined at system design time: 

• Channel delay varies on mobile devices 

• Phase difference between transmitter and receiver is arbitrary 

 

One solution:  quadrature demodulation 
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Quadrature Demodulation 

If we let 
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OK for recovering x[n] if it 

never goes negative, as in  

on-off keying 
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BPSK 

I 

Q 

In binary phase-shift keying (BPSK), the message bit 

selects one of two phases for the carrier, e.g., π/2 for 

0 and –π/2 for 1. 
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Dealing With Phase Ambiguity 

BPSK is also subject phase changes introduced 

by channel delays or phase difference between 

xmit and rcv: the received constellation will be 

rotated with respect to the transmitter’s 

constellation.  Which phase corresponds to 

which bit? 

I 

Q 

The fix?  Think of the phase encoding as differential, not 

absolute: a change in phase corresponds to a change in bit 

value.  Assume that, by convention, messages start with a single 

0 bit, i.e., prepend a 0 to each to message.  Then the first phase 

change represents a 0→1 transition, the second phase change a 

1→0 transition, and so on. 
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QPSK Modulation 
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Map bit into voltage value 
Odd bits 

Even bits 

Still need band limiting at transmitter 

When mapping bits to voltage values, we should choose the 

values so that the maximum amplitude of t[n] is 1.  For QPSK 

(also referred to as QAM-4) that would mean  
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We can use the quadrature scheme at the transmitter too: 

(I,Q) 
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QAM Modulation 
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Map bits into voltage value 
Odd bits 

Even bits 

Still need band limiting at transmitter 

Use more levels in each arm (e.g. 4 levels per arm – 16QAM): 

(-3A,-A, 

A, 3A) 

Symbol/bits mapping table 

00 -> -3A 

01 -> -A 

11 ->  A 

10 -> 3A 

Gray Code (noise movement into another constellation point  

                  only causes single bit errors) 

00 01 10 11 

00 

01 

10 

11 
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