
4/18/12

1

6.02 Spring 2012 Lecture 18, Slide #1

6.02 Spring 2012
Lecture #18 (More MAC)

•  Stabilizing Aloha
•  Carrier sense multiple access (CSMA)
•  Contention windows (instead of xmit probability)

6.02 Spring 2012 Lecture 18, Slide #2

Simulation of Slotted Aloha (N=10)

Utilization = .38, Fairness = .98

python PS7_fixedaloha.py –r –n 10 –p .1 –t 1000

Top: success
Bottom: failure

6.02 Spring 2012 Lecture 18, Slide #3

Stabilization: Selecting the Right p
•  Setting p = 1/N maximizes utilization, where N is the number

of backlogged nodes.

•  With bursty traffic or nodes with unequal offered loads (aka
skewed loads), the number of backlogged is constantly
varying.

•  Issue: how to dynamically adjust p to achieve maximum
utilization?
–  Detect collisions by listening, or by missing acknowledgement

–  Each node maintains its own estimate of p

–  If collision detected, too much traffic, so decrease local p

–  If success, maybe more traffic possible, so increase local p

•  “Stabilization” is, in general, the process of ensuring that a
system is operating at, or near, a desired operating point.
–  Stabilizing Aloha: finding a p that maximizes utilization as

loading changes.

6.02 Spring 2012 Lecture 18, Slide #4

Binary Exponential Backoff
•  Decreasing p on collision

–  Estimate of N (# of backlogged nodes) too low, p too high
–  To quickly find correct value use multiplicative decrease:

 p ← p/2

–  k collisions in a row: p decreased by factor of 2－k

–  Binary: 2, exponential: k, back-off: smaller p → more time
between tries

•  Increasing p on success
–  While we were waiting to send, other nodes may have emptied

their queues, reducing their offered load.
–  If increase is too small, slots may go idle

–  Try multiplicative increase: p ← min(2*p,1)

–  Or maybe just: p ← 1 to ensure no slots go idle

4/18/12

2

6.02 Spring 2012 Lecture 18, Slide #5

Simulation of Stabilized Aloha

python PS7_stabaloha.py –r –n 10 –t 1000

Utilization = .33, Fairness = .47

Some nodes did well

Others didn’t

6.02 Spring 2012 Lecture 18, Slide #6

Node probabilities over time
(different run from previous page)

Y-axis is per-node transmission probability
Bottom panel: per-node throughput

6.02 Spring 2012 Lecture 18, Slide #7

What Went Wrong?
•  Starvation

–  Too many successive failures → p very small → no xmit attempts
–  Result: significant long-term unfairness

–  Try a reduction rule with a lower bound: p ← max(pmin, p/2)

–  Choosing pmin << 1/max(N) works best

•  But there’s another problem: capture effect

python PS7_stabaloha.py –r –n 6 –t 1000 --pmin=.05
Utilization = .71, Fairness = .99

Some node “captures” the
network for a period, starving
the others…

Significant short-term
unfairness!

6.02 Spring 2012 Lecture 18, Slide #8

Limiting the Capture Effect
•  Capture effect

–  A successful node maintains a high p (avg. near 1)
–  Starves out other nodes for short periods

–  Try an increase rule with an upper bound: p ← min(pmax,2*p)

python PS7_stabaloha.py –r –n 10 –t 10000 --pmin=.05 --pmax=0.8
Utilization = .41, Fairness = .99

4/18/12

3

6.02 Spring 2012 Lecture 18, Slide #9

Node Probabilities: pmax=.25, pmin=.01
(different run from previous page)

Y-axis is per-node transmission probability
Bottom panel: per-node throughput

6.02 Spring 2012 Lecture 18, Slide #10

Spot Quiz
1.  In Aloha, each node maintains a variable, p. What does p

represent? [P(x) is “probability of event x”]
A.  P(node being backlogged)
B.  P(backlogged node sends in a timeslot)

C.  P(packet transmission is received correctly)

D.  P(time slot is kept idle)

2.  In stabilized Aloha, the value of p never goes below pmin.
Why should pmin not be too small?
A.  To increase the utilization

B.  To avoid extreme unfairness

C.  To reduce the problems caused by the “capture effect”

D.  To reduce the number of collisions

3.  Slotted Aloha, packet size 1 slot, N backlogged nodes, each
node has a fixed p. Calculate: P(collision in a timeslot)

 Soln: P(collision) = P(≥2 xmits) = 1 – P(no xmit) – P(1 xmit) =
 P(no xmit) = (1-p)N; P(1 xmit) = Np(1-p)(N-1)

 Therefore, P(collision) = 1 - (1-p)N - Np(1-p)(N-1).	

6.02 Spring 2012 Lecture 18, Slide #11

“Unslotted” Aloha in Pictures: Collisions

•  A collision occurs when multiple transmissions
overlap in time (even partially)

•  Throughput = Uncollided packets per second
•  Utilization = Throughput / Channel Rate

Packet is 5 slots long in this picture

6.02 Spring 2012 Lecture 18, Slide #12

Utilization in Unslotted Aloha

Probability of no transmission for 2T－1 slots:

1! p()2T!1

Utilization = throughput/maximum rate:

Uunslotted Aloha !
Np 1" p() 2T"1()N"1

1 T
= TNp 1" p() 2T"1()N"1

Probability of a sender experiencing no collisions:

! p 1" p()2T"2#
$

%
& 1" p()2T"1#
$

%
&
N"1

= p(1" p)(2T"1)N"1

= for nodes that try to send new packet while busy with last one!

4/18/12

4

6.02 Spring 2012 Lecture 18, Slide #13

Umax for Unslotted Aloha

Maximization with respect to p:

log …() = const + log(p)+ 2T !1()N !1"# $%log(1! p)

Derivative:

1
p
+

2T !1()N !1
1! p

, which equals 0 at p = 1
2T !1()N

Plugging back into U:

Umax =
T

2T !1
1! 1

2T !1()N
"

#
$$

%

&
''

2T!1()N!1

For large N: Umax !
T

2T "1
#

$
%

&

'
(
1
e

For large N, T: Umax !
1
2e

Half the utilization of slotted Aloha;
makes sense: twice the window of vulnerability

6.02 Spring 2012 Lecture 18, Slide #14

Simulation of Unslotted Aloha

python PS7_stabaloha.py –r –n 10 –t 100000 --pmin=.005 --pmax=0.8 –s 10

Utilization = .21, Fairness = .99

6.02 Spring 2012 Lecture 18, Slide #15

Carrier Sense
•  Reduce collisions with on-going transmissions by

transmitting only if channel appears not to be busy

•  For large T (slots/packet) if channel is busy this
slot, the same sender will probably be transmitting
more of their packet next slot

•  When the channel is idle, there’s no chance of
interrupting an on-going transmission

•  That leaves the possibility of colliding with another
transmission that starts at the same time – a one
slot window of vulnerability, not 2T-1 slots.

•  Expect collisions to drop dramatically, utilization to
be quite a bit better

•  Busy = detect energy on channel. On many
channels, transmitters turn on carrier to transmit,
hence the term “carrier sense”.

6.02 Spring 2012 Lecture 18, Slide #16

Simulation of Carrier Sense

python PS6_4.py –r –n 10 –t 100000 --pmin=.005 --pmax=0.8 –s 10

Utilization = .78, Fairness = .96

4/18/12

5

6.02 Spring 2012 Lecture 18, Slide #17

Contention Windows

•  Contention Window: parameter is some integer CW
•  When node wants to transmit, it picks a random

number r uniformly in [1,CW] and sends after the
rth idle slot from the current time.

•  If transmission succeeds: CW ← max(CWmin,CW/2)
If transmission collides: CW ← min(CWmax,CW*2)

•  Node is guaranteed to attempt a transmission
within CW slots. With the earlier scheme, there
was always the chance (though exponentially
decreasing) that a node may not transmit within
some fixed number of time slots.

6.02 Spring 2012 Lecture 18, Slide #18

Simulation of Contention Windows

python PS7_cw.py –r –n 10 –t 100000 –W 256 –s 10

Utilization = .74, Fairness = .92

6.02 Spring 2012 Lecture 18, Slide #19

Summary of MAC Protocols

•  Main goals: high utilization and fairness
•  TDMA: good when nodes are mostly backlogged

–  Round-robin sharing provides equal rates & bounded wait

–  100% utilization & fairness = 1.0 if all nodes backlogged
–  Poor choice when traffic is bursty or load is skewed

–  Hard to implement in a fully distributed way (easier with
“master”, like a base station or access point)

•  Contention protocols dynamically adapt to traffic
–  Distributed: avoids central controller having to know

which nodes have packets to send

–  Fixed Aloha: max util is 1/e (37%) when N is large

–  Stabilized Aloha: Parameter (p or CW) that controls when
packets are sent is adjusted so that Prob(sending packet)
is lowered when collisions are detected and raised when
xmissions succeed (multiplicative decrease of p)

–  Carrier sense improves throughput (with stabilization)

