

- What's wrong with just connecting every pair of computers with dedicated links?
- Switches orchestrate flow of information through the network, often multiplexing many logically-independent flows over a single physical link
- Packet switching: model for sharing in most current communication networks

From Links to Networks

- Have: digital point-to-point We've studied channel coding,

- Want: many interconnected points

Sharing the Network

We have many application-level communications, which we'll call "connections", that need to mapped onto a smaller number of links

How should we share the links between all the connections?

Two approaches possible:
Circuit switching (isochronous)
Packet switching (asynchronous)

Multiplexing/Demultiplexing

One sharing technique: time-division multiplexing (TDM)

- Time divided into frames and frames divided into slots _ Number of slots = number of concurrent conversations
- Relative slot position inside a frame determines which conversation the data belongs to
- E.g., slot 0 belongs to the red conversation
- Mapping established during setup, removed at tear down
- Forwarding step at switch: consult table

Circuit Switching

- First establish a circuit between end points

TDM Shares Link Equally, But Has Limitations

- Suppose link capacity is C bits/sec
- Each communication requires R bits/sec
- \#frames in one "epoch" (one frame per communication) $=C / R$
- Maximum number of concurrent communications is C / R
- What happens if we have more than C / R communications?
- What happens if the communication sends less/more than R bits/sec?
\rightarrow Design is unsuitable when traffic arrives in bursts

Circuit-Switching Example: Telephone Network ATT North America, c. mid-1990's

Packet Switching

Used in the Internet
Data is sent in packets
header contains control info,
e.g., source and destination
addresses)
addresses)

Per-packet forwarding
At each node the entire
packet is received, stored,
and then forwarded (store-
and-forward networks)
No capacity is allocated

Packet-Switched Networks

The pioneering research of Paul Baran in the 1960s, who envisioned a communications network that would survive a major enemy attack. The sketch shows three different network topologies described in his RAND Memorandum, On Distributed Communications: 1. Introduction to Distributed Communications Network" (August 1964). The distributed network structure was judged to offer the
best survivability.
http://www.cybergeography.org/atlas/historical.html

Version	Traffic Class	Flow Label	
Length	Next Header	Hop Limit	
IP Version 6 header Destination Address			
	Source Address		

Packet Switching: Multiplexing/Demultiplexing

- Router has a routing table that contains information about which link to use to reach a destination
- For each link, packets are maintained in a queue
- If queue is full, packets will be dropped
- Demultiplex using information in packet header
- Header has destination

Why Packet Switching Works:
 Statistical Multiplexing

Queues are Essential in a Packet-Switched Network

- Queues manage packets between arrival and departure
- They are a "necessary evil"
- Needed to absorb bursts
- But they add delay by making packets wait until link is available
- So they shouldn't be too big

Best Effort Delivery Model

No Guarantees!

- No guarantee of delivery at all!
- Packets get dropped (due to corruption or congestion)
- Use Acknowledgement/Retransmission protocol to recover - How to determine when to retransmit? Timeout?
- Each packet is individually routed
- May arrive at final destination reordered from the transmit order
- No latency guarantee for delivery
- Delays through the network vary packet-to-packet
- If packet is retransmitted too soon \rightarrow duplicate

Sounds like the US Mail!

Four Sources of Delay (Latency) in Networks

- Propagation delay
- Speed-of-signal (light) delay: Time to send 1 (first) bit
- Processing delay
- Time spent by the hosts and switches to process packet (lookup header, compute checksums, etc.)
- Transmission delay
- Time spent sending packet of size S bits over link(s)
- On a given link of rate R bits/s, transmission delay $=$ S/R sec
- Queueing delay
- Time spent waiting in queue
- Variable
- Whose mean can be calculated from Little's law

