
4/30/12

1

6.02 Spring 2012 Lecture 21, Slide #1

6.02 Spring 2012
Lecture #21

• Link-state routing

• Routing around failures

6.02 Spring 2012 Lecture 21, Slide #2

Link-State Routing

•  Advertisement step
–  Send information about its links to its neighbors (aka link

state advertisement or LSA):

 [node, seq#, [(nbhr1, linkcost1), (nbhr2, linkcost2), …]

–  Do it periodically (liveness, recover from lost LSAs)
•  Integration

–  If seq# in incoming LSA > seq# in saved LSA for source node:
 update LSA for node with new seq#, neighbor list
 rebroadcast LSA to neighbors (→ flooding)

–  Remove saved LSAs if seq# is too far out-of-date
–  Result: Each node discovers current map of the network

•  Build routing table
–  Periodically each node runs the same shortest path algorithm

over its map (e.g., Dijkstra’s alg)
–  If each node implements computation correctly and each

node has the same map, then routing tables will be correct

6.02 Spring 2012 Lecture 21, Slide #3

LSA Flooding

A

B

C

D

E

6

6

5

4

0

7

F

G

2

2

8

LSA: [F, seq, (G, 8), (C, 2)]

•  Periodically originate LSA

•  LSA travels each link in each direction
–  Don’t bother with figuring out which link LSA came from

•  Termination: each node rebroadcasts LSA exactly once
–  Use sequence number to determine if new, save latest seq

•  Multiple opportunities for each node to hear any given LSA
–  Time required: number of links to cross network

6.02 Spring 2012 Lecture 21, Slide #4

A

B

C

D

E

6

6

5

4

0

7

F

G

2

2

8

(6)

(6)

(8)

(10)

(13) (16)

Integration Step: Dijkstra’s Algorithm
(Example)

Suppose we want to find paths from A to other nodes

C

(12)

B

F A

(0)

(11)
(10)

E

D G

4/30/12

2

6.02 Spring 2012 Lecture 21, Slide #5

Dijkstra’s Shortest Path Algorithm

•  Initially
–  nodeset = [all nodes] = set of nodes we haven’t processed

–  spcost = {me:0, all other nodes: ∞} # shortest path cost

–  routes = {me:--, all other nodes: ?} # routing table

•  while nodeset isn’t empty:
–  find u, the node in nodeset with smallest spcost

–  remove u from nodeset

–  for v in [u’s neighbors]:
•  d = spcost(u) + cost(u,v) # distance to v via u

•  if d < spcost(v): # we found a shorter path!

–  spcost[v] = d
–  routes[v] = routes[u] (or if u == me, enter link from me to

v)

6.02 Spring 2012 Lecture 21, Slide #6

Another Example

B

C

D

E

A

4

11

5

13 15

19

7

Step u Nodeset
spcost route

A B C D E A B C D E

0 [A,B,C,D,E] 0 ∞ ∞ ∞ ∞ -- ? ? ? ?

1 A [B,C,D,E] 0 19 7 ∞ ∞ -- L0 L1 ? ?

2 C [B,D,E] 0 18 7 22 12 -- L1 L1 L1 L1

3 E [B,D] 0 18 7 22 12 -- L1 L1 L1 L1

4 B [D] 0 18 7 22 12 -- L1 L1 L1 L1

5 D [] 0 18 7 22 12 -- L1 L1 L1 L1

Finding shortest paths from A:

LSAs:
 A: [(B,19), (C, 7)]
 B: [(A,19), (C,11), (D, 4)]
 C: [(A, 7), (B,11), (D,15), (E, 5)]
 D: [(B, 4), (C,15), (E,13)]
 E: [(C, 5), (D,13)]

6.02 Spring 2012 Lecture 21, Slide #7

Failures

•  Problems:Links and switches could fail
–  Advertisements could get lost

–  Routing loop
•  A sequence of nodes on forwarding path that has a

cycle (so packets will never reach destination)

–  Dead-end: route does not actually reach destination

–  Loops and dead-ends lead to routes not being valid

•  Solution
–  HELLO protocol to detect neighbor liveness

–  Periodic advertisements from nodes
–  Periodic integration at nodes

–  Leads to eventual convergence to correct state
(see Chapter 18)

6.02 Spring 2012 Lecture 21, Slide #8

Routing Loop in Link-State Protocol

A B

D

path
B to D is via A.
Link AD fails.
A’s LSA to B is lost.
A now uses B to get to D.
But B continues to use A.
Routing loop!
Must wait for eventual arrival
of correct LSAs to fix loop

4/30/12

3

6.02 Spring 2012 Lecture 21, Slide #9

Distance-Vector: Pros, Cons, and Loops

•  + Simple protocol
•  + Works well for small networks
•  - Works only on small networks

A

B

C

D

E

L1

L2

L1

L2

L1
L2 L1

L2

L1 L3

L2

L3

Suppose link AC fails.
When A discovers failure, it
sends E: cost = INFINITY to B.

Now suppose link BD fails.
B discovers it, then sets
E: cost = INFINITY.
Sends info to A, A sets
E: cost = INFINITY.

B advertises E: cost=2 to A
A sets E: cost=3 in its table

E:cost=3

E:cost=4

But what if A had advertised
to B before B advertised to A?

E:cost=X5

E:cost=X6

Counting to infinity!

6.02 Spring 2012 Lecture 21, Slide #10

Fixing “Count to Infinity” with Path Vector
Routing

•  In addition to (or instead of) reporting costs, advertise the
path discovered incrementally by the Bellman-Ford update
rule

•  Called “path-vector”

•  Modify Bellman-Ford update with new rule: a node should
ignore any advertised route that contains itself in the
advertisement

6.02 Spring 2012 Lecture 21, Slide #11

Path Vector Routing

A

B

C

D

E

l1

l2

l1
l2

l1
l2 l1

l2

l1 l3

l2

l3

E: ‘Self’

“To reach E, come this way”
path = [E]

“To reach E, come this way”
path = [E]

[CE]

E: l2; cost=2; path=[DE]

E: l1; cost=2; path=[CE]

E: l2; cost=1; path=[E]

E: l1; cost=1; path=[E]

[DE]

[CE]

[CE]

[DE]

[ACE]
[BDE]

[ACE]

[BDE]

•  For each advertisement, run “integration step”
–  E.g., pick shortest, cheapest, quickest, etc.

•  Ignore advertisements with own address in path vector
–  Avoids routing loops that “count to infinity”

[DE]

6.02 Spring 2012 Lecture 21, Slide #12

Summary

•  The network layer implements the “glue” that
achieves connectivity
–  Does addressing, forwarding, and routing

•  Forwarding entails a routing table lookup; the
table is built using routing protocol

•  DV protocol: distributes route computation;
each node advertises its best routes to
neighbors
–  Path-vector: include path, not just cost, in

advertisement to avoid “count-to-infinity”

•  LS protocol: distributes (floods) neighbor
information; centralizes route computation
using shortest-path algorithm

