
5/7/12

1

6.02 Spring 2012 Lecture 23, Slide #1

6.02 Fall 2011
Lecture #23

• Sliding window protocol
• Analysis:

 Bandwidth-delay product & queues
 Packet loss performance

6.02 Spring 2012 Lecture 23, Slide #2

Sliding Window Protocol

•  Use a window
–  Allow W packets outstanding (i.e.,

unack’d) in the network at once
(W is called the window size).

–  Overlap transmissions with ACKs

•  Sender advances the window by 1 for
each in-sequence ack it receives
–  I.e., window slides
–  So, idle period reduces
–  Pipelining

•  Assume that the window size, W, is
fixed and known
–  Later, we will discuss how one might

set it
–  W = 3 in the example on the left

SENDER RECEIVER

6.02 Spring 2012 Lecture 23, Slide #3

Sndr

Rcvr

window = 1-5

1 2 3 4 5

p1

a1

6

Sliding Window in Action

window = 2-6

a2

p2

W = 5 in this example

6.02 Spring 2012 Lecture 23, Slide #4

Sndr

Rcvr

1 2 3 4 5

p1

a1

6

a3

p3

Sliding Window in Action

window = 3-7

a2

p2

7

window = 2-6

Window definition: If window is W, then max number of
unacknowledged packets is W

This is a fixed-size sliding window

5/7/12

2

6.02 Spring 2012 Lecture 23, Slide #5

Sndr

Rcvr

window = 1-5

1 2 3 4 5

p1

a1

x

6

a3

p3

window = 2-6

Sliding Window: Handling Packet Loss

6.02 Spring 2012 Lecture 23, Slide #6

Sndr

1 2 3 4 5

p1

a1

x

6

a3

p3

a8

p4

Timeout

11 7 8 9 10

Rcvr

Data packet 2 is lost. The receiver must save packets all later
packets until packet 2 arrives, to deliver them to the application in
proper order. Note that with our definition of the window, there’s
no limit to the number of packets that might arrive out of order.

Q: Can the receiver discard these later packets (3, 4, …, 12?)

p7

a6

p6

a5

p5 p2

a7 a9

p8 p9 p10

a10 a4

Sliding Window: Handling Packet Loss

12 2

p11 p12

a11 a12 a2

6.02 Spring 2012 Lecture 23, Slide #7

Sender
Receiver

1
2
3
4
5

6
7
8
9
10

X

1
2
3
4
5

6
7

9
10

11
12

13

14
8

11
12

13
8

T
IM

E
O

U
T

RXMIT

ACKs

Packet lost

Sender’s window size = 5

6.02 Spring 2012 Lecture 23, Slide #8

 560

 580

 600

 620

 640

 660

 680

 800 820 840 860 880 900

"trace2-seq"
"trace2-ack"

Time (ms)

D
a
ta

/
A

C
K

 s
eq

u
en

ce
 n

u
m

b
er

Data/ACK sequence trace

Data ACKs

RTT

RTO

Window

Rxmit ACKs for rxmitted
packets (most probably)

5/7/12

3

6.02 Spring 2012 Lecture 23, Slide #9

Sliding Window Implementation
•  Transmitter

–  Each packet includes a sequentially increasing sequence number
–  When transmitting, save (xmit time,packet) on un-ACKed list

–  Transmit packets if len(un-ACKed list) ≤ window size W

–  When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list

–  Periodically check un-ACKed list for packets sent awhile ago
•  Retransmit, update xmit time in case we have to do it again!

•  “awhile ago”: xmit time < now － timeout

•  Receiver
–  Send ACK for each received packet, reference sequence number

–  Deliver packet payload to application in sequence number order
•  Save delivered packets in sequence number order in local buffer

(remove duplicates). Discard incoming packets which have already
been delivered (caused by retransmission due to lost ACK).

•  Keep track of next packet application expects. After each reception,
deliver as many in-order packets as possible.

6.02 Spring 2012 Lecture 23, Slide #10

•  If we can get “Idle” to 0, will
achieve goal

•  W = #packets in window
•  B = rate of slowest (bottleneck) link
•  RTT_min = Min RTT along path, in

the absence of any queueing

•  If W = B · RTT_min, path will be
fully utilized
–  B · RTT_min is the “bandwidth-

delay product”
–  A key concept in the

performance of windowed
transport protocols

Host A Host B

Send?

OK, 3 pkts

Idle

Setting the Window Size:
Apply Little’s Law

6.02 Spring 2012 Lecture 23, Slide #11

Throughput of Sliding Window Protocol
•  If there are no lost packets, protocol delivers W packets every

RTT seconds, so throughput is W/RTT

•  Goal: to achieve high utilization, select W so that the
bottleneck link is never idle due to lack of packets

•  Without packet losses:
–  Throughput = W/RTTmin if W ≤ B·RTTmin,

 = B otherwise

–  If W > B·RTTmin, then W = B·RTTmin + Q, where Q is the queue
occupancy

•  With packet losses:
–  Pick W > B·RTTmin to ensure bottleneck link is busy even if there

are packet losses
–  Expected # of transmissions, T, for successful delivery of pkt and

ACK satisfies: T = (1-L) ·1 + L·(1 + T), so T = 1/(1－L),
where L = Prob(either packet OR its ACK is lost)

–  Therefore, throughput = (1－L)*B

•  If W >> B·RTTmin, then delays too large, timeout too big, and
other connections may suffer

6.02 Spring 2012 Lecture 23, Slide #12

Example

Q: The sender’s window size is 10 packets. At what
approximate rate (in packets per second) will the protocol
deliver a multi-gigabyte file from the sender to the receiver?
Assume that there is no other traffic in the network and
packets can only be lost because the queues overflow.

A: 10 packets / 21 ms, = 476 packets/second

5/7/12

4

6.02 Spring 2012 Lecture 23, Slide #13

Example (cont.)

Q: You would like to roughly
double the throughput of our
sliding window transport protocol.
To do so, you can apply one of the
following techniques:
a.  Double window size W
b.  Halve the propagation delay of

the links
c.  Double the rate of the link

between the Switch and
Receiver

Q: For each of the following sender window sizes (in packets),
list which of the above technique(s), if any, can approximately
double the throughput: W=10, W=50, W=30.

6.02 Spring 2012 Lecture 23, Slide #14

Solutions to Example
•  Note that BW-delay product on given path = 20 packets

•  W=10
–  Doubling window size ~doubles throughput (BW-delay product is

20 on path)

–  Halving RTT ~doubles throughput (since now BW-delay product
would be 10, equal to window size)

–  Doubling bottleneck link rate won’t change throughput much!

•  W=50
–  Doubling window size won’t change throughput (we’re already

saturating the bottleneck link)

–  Halving RTT won’t change throughput (same reason)

–  Doubling bottleneck link speed will ~double throughput because
new bw-delay product doubles to 40, and W=50 > 40

•  W=30 (trickiest case)
–  Doubling window size or halving RTT: no effect

–  Doubling bottleneck link changes BW-delay product to 40. W is
still lower than 40, so throughput won’t double. But it’ll certainly
increase, by perhaps about 50% more from before

