()

’1“{11

DIGITAL

f (freq. domain)]

i I
LILA LA

COMMUNICATION
SYSTEMS

T
-

6.02 Fall 2011
Lecture #23

» Sliding window protocol

* Analysis:
Bandwidth-delay product & queues
Packet loss performance

Sliding Window Protocol

¢ Use a window

SENDER RECEIVER — Allow W packets outstanding (i.e.,
unack’d) in the network at once
(W is called the window size).

— Overlap transmissions with ACKs

each in-sequence ack it receives
— lLe., window slides
— So, idle period reduces
— Pipelining

%\‘ * Sender advances the window by 1 for

* Assume that the window size, W, is
fixed and known
— Later, we will discuss how one might
set it
— W = 3 in the example on the left

Sliding Window in Action

windeindol5 2-6

Sndr

Rcvr
pl p2

W = 5 in this example

Sliding Window in Action

Rcvr
pl pP2p3

Window definition: If window is W, then max number of
unacknowledged packets is W

This is a fixed-size sliding window

5/7/12

Sndr

Sliding Window: Handling Packet Loss

windednddwS= 2-6

Rcvr

Sndr ------ ’---- -

Revr

Sliding Window: Handling Packet Loss

Timeout

1 23 45 6 7 8 910 1112|2

/’ /’ /ﬁ
al L a]/2 alé

pl p3 p4p5 pb p7 P8 p9pl0 pllpl2 p2
Data packet 2 is lost. The receiver must save packets all later
packets until packet 2 arrives, to deliver them to the application in

proper order. Note that with our definition of the window, there’s
no limit to the number of packets that might arrive out of order.

Q: Can the receiver discard these later packets (3, 4, ..., 12?)

TIMEOUT

[RXMIT

Sender Sender’'s window size = 5

Data/ACK sequence trace

"h"ace2»seq" +
680 ‘trace2-ack' x

o - e v
+
a) Window . o
g 660 =
5 e
2 ENENS O
0 s B
9 640 XD X
[DV ++ %
g + o x X %
" RTT e
g ++++ X X *
@ 620 ot X
v Lt RTO ~= L X
Q -+ e
+F X
< e X %
T sk NN P SN e
« 2 SRXMIT CKSIOr TXmittea
X
g éxxxxx packets (most probably)
x
2" ® ®
=1 © ©
560 <
800 820 840 860 880 900
Time (ms)

5/7/12

Sliding Window Implementation

Transmitter
— Each packet includes a sequentially increasing sequence number
— When transmitting, save (xmit time,packet) on un-ACKed list
— Transmit packets if len(un-ACKed list) < window size W
— When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list
— Periodically check un-ACKed list for packets sent awhile ago
* Retransmit, update xmit time in case we have to do it again!
« “awhile ago”: xmit time < now — timeout
Receiver
— Send ACK for each received packet, reference sequence number
— Deliver packet payload to application in sequence number order
» Save delivered packets in sequence number order in local buffer
(remove duplicates). Discard incoming packets which have already
been delivered (caused by retransmission due to lost ACK).
» Keep track of next packet application expects. After each reception,
deliver as many in-order packets as possible.

Setting the Window Size:
Apply Little’s Law

Host A Host B » If we can get “Idle” to 0, will

achieve goal

Sendp
\. » W = #packets in window

< 3 P + B = rate of slowest (bottleneck) link
._—~Q" * RTT_min = Min RTT along path, in

%\‘ the absence of any queueing

- e If W= B -RTT_min, path will be
- I Idle fully utilized
— B-RTT_min is the “bandwidth-
< delay product”
= — A key concept in the

- -

B performance of windowed

,\\ transport protocols

Throughput of Sliding Window Protocol

If there are no lost packets, protocol delivers W packets every
RTT seconds, so throughput is W/RTT
Goal: to achieve high utilization, select W so that the
bottleneck link is never idle due to lack of packets
Without packet losses:
— Throughput = W/RTT,,;, if W < B-RTT,
= B otherwise
— If W > B-RTT,,;,, then W = B-RTT,;, + Q, where Q is the queue
occupancy
With packet losses:
— Pick W > B-RTT,;, to ensure bottleneck link is busy even if there
are packet losses

min>

min>

— Expected # of transmissions, T, for successful delivery of pkt and
ACK satisfies: T = (1-L) -1 + L-(1 + T), so T = 1/(1-L),
where L = Prob(either packet OR its ACK is lost)
— Therefore, throughput = (1-L)*B
If W >> B:RTT,,;,, then delays too large, timeout too big, and
other connections may suffer

ueue
108 bytes/s 0° bytes/s
Sender Switch Receiver
o 10% bytes/s / (\ 10° bytes/s 7
S~ S~ -

Propagation delay =~ One-way propagation delay
=0 milliseconds =10 milliseconds

Max queue size = 30 packets

Packet size = 1000 bytes

ACK size = 40 bytes

Initial sender window size = 10 packets

Q: The sender’s window size is 10 packets. At what
approximate rate (in packets per second) will the protocol
deliver a multi-gigabyte file from the sender to the receiver?
Assume that there is no other traffic in the network and
packets can only be lost because the queues overflow.

A: 10 packets / 21 ms, = 476 packets/second

5/7/12

Example (cont.)

Q: You would like to roughly

Ueue 106 bytes/s double the throughput of our
108 bytes/s Vtes/ o .
Sender Switch receiver | sliding window transport protocol.
_ 10% bytes/s AN 10° bytes/s 7
~o_ _T N - To do so, you can apply one of the

Propagation delay ~ One-way propagation delay followmg teChnlqueS'

=0 milliseconds = 10 milliseconds a. Double window size W
b. Halve the propagation delay of
Max queue size = 30 packets the links
Zaccl(k;‘z:ifiolb‘i(t’gsbv‘es c. Double the rate of the link
Initial sender window size = 10 packets between the Switch and
Receiver

Q: For each of the following sender window sizes (in packets),
list which of the above technique(s), if any, can approximately
double the throughput: W=10, W=50, W=30.

Solutions to Example

Note that BW-delay product on given path = 20 packets
W=10

— Doubling window size ~doubles throughput (BW-delay product is
20 on path)

Halving RTT ~doubles throughput (since now BW-delay product
would be 10, equal to window size)

Doubling bottleneck link rate won’t change throughput much!
W=50
Doubling window size won’t change throughput (we’re already
saturating the bottleneck link)
Halving RTT won’t change throughput (same reason)

— Doubling bottleneck link speed will ~double throughput because

new bw-delay product doubles to 40, and W=50 > 40

W=30 (trickiest case)

— Doubling window size or halving RTT: no effect

— Doubling bottleneck link changes BW-delay product to 40. W is
still lower than 40, so throughput won’t double. But it'll certainly
increase, by perhaps about 50% more from before

5/7/12

