6.02	Solutions to Chapter 13	Updated: April 22, 2012
------	-------------------------	-------------------------

Please send information about errors or omissions to hari; questions are best asked on piazza.

- 1. In PS 5; please see those solutions.
- 2. (a)

$$|H(\Omega)| = 1 \quad \text{for } 0 \le |\Omega| < \Omega_m ,$$

= 0 for $\Omega_m \le |\Omega| \le \pi .$

and

$$\angle H(\Omega) = -3\Omega \quad \text{for } 0 \le |\Omega| < \Omega_m$$

 $\angle H(\Omega)$ is a *linear* function of Ω , with slope -3. (The phase is undefined and unimportant for those Ω at which the magnitude is 0.)

(b) A frequency response of $H(\Omega) = e^{-j3\Omega}$ for all Ω in $[-\pi, \pi]$ is associated with a unit sample response of $h[n] = \delta[n-3]$, and corresponds to an LTI system that delays its input by 3 samples.

Hence, in terms of the input x[.], the output y[n] = x[n-3].

(c) $A_k = \frac{1}{12} \left(1 + 2\cos(\Omega_k) \right).$

From the expression above, taking $\langle n \rangle$ to be the range [-6, 5] and noting that the only nonzero values of x[n] in this range are x[-1] = x[0] = x[1] = 1, we get

$$A_{k} = \frac{1}{12} \left(x[-1]e^{j\Omega_{k}} + x[0]e^{-j\theta} + x[1]e^{-j\Omega_{k}} \right)$$
$$= \frac{1}{12} \left(1 + 2\cos(\Omega_{k}) \right).$$

Equivalently, we could for example take $\langle n \rangle$ to be the range [0, 11]. Since the only nonzero values of x[n] in this range are x[0] = x[1] = x[11] = 1, we get

$$A_{k} = \frac{1}{12} \left(x[0]e^{-j0} + x[1]e^{-j\Omega_{k}} + x[11]e^{-j1\Omega_{k}} \right)$$

= $\frac{1}{12} \left(x[0]e^{-j0} + x[1]e^{-j\Omega_{k}} + x[11]e^{j\Omega_{k}} \right) = \frac{1}{12} \left(1 + 2\cos(\Omega_{k}) \right),$

exactly as before. In arriving at the second equation above, we have used the given equality $\exp(-j11\Omega_1) = \exp(j\Omega_1)$ to conclude (on taking the *k*th power of each side) that $\exp(-j11k\Omega_1) = \exp(jk\Omega_1)$, i.e., $\exp(-j11\Omega_k) = \exp(j\Omega_k)$.

Check on A_0 : We know A_0 should be the average of the values over one period, namely 3/12 or 1/4, and this is consistent with the above formula, since $\cos(\Omega_0) = \cos(0) = 1$.

Check on A_{-6} : Similarly, $A_{-6} = A_6$ should be the "alternating average" of the values over one period, namely $\frac{1}{12} \sum_{\langle n \rangle} (-1)^n x[n]$, which in this case is -1/12. This is again consistent with the above formula, since $\cos(\Omega_{-6}) = \cos(\Omega_6) = \cos(\pi) = -1$.

- 3. (a) On the real graph: 1 at Ω = -π, 0.5 at Ω = -2π/3, 1 at Ω = -π/3. On the imaginary graph: -1 at Ω = -π/2. This is based on the observation that for a real-valued signal, the Fourier coefficients must be symmetric, i.e. even for the real part, odd for the imaginary part.
 - (b) The period, T, is 12. All frequencies that show up with spectral coefficients must be of the form $\frac{2\pi k}{N}$ for integer k and a constant N. Looking at the real part of the fourier coefficients, we can deduce that k = 0, 1, 2, 3 and N = 3 can create the frequencies with non-zero components. However, looking at the imaginary part of the spectral coefficients, we observe that $\frac{\pi}{2}$ must also be a multiple of the fundamental frequency. We note that N = 6 can satisfy this set of frequency, with k = 0, 1, 2, 3, 4, 5, 6. However, the graph only shows k < N/2, so N must be equal to 12. This is the period of the signal, and the smallest integer for which x[n + T] = x[n].

Alternatively: The period T = 12 because the least common multiple of $6 = 2\pi/\frac{\pi}{3}$, $4 = 2\pi/\frac{\pi}{2}$, $3 = 2\pi/\frac{2\pi}{3}$ and $2 = 2\pi/\pi$ is 12.

- (c) When a complex exponential $Ae^{j\Omega n}$ passes through an LTI filter, it gets multiplied by $H(e^{j\Omega})$, where $H(\cdot)$ is the frequency response of the filter. Since "delay by 6 samples" is an LTI filter with frequency response $H(e^{j\Omega}) = e^{-j6\Omega}$, the Fourier coefficients at $\Omega = 0$, $\Omega = \pi/3$, $\Omega = \pi/2$, $\Omega = 2\pi/3$, and $\Omega = \pi$ will be multiplied by $e^{-j6\cdot 0} = 1$, $e^{-j6\cdot \pi/3} = 1$, $e^{-j6\cdot\pi/2} = -1$, $e^{-j6\cdot2\pi/3} = 1$, and $e^{-j6\cdot\pi} = 1$ respectively, the resulting Fourier coefficients will be:
 - On the real graph: 1 at $\Omega = 0$, $\Omega = \pi/3$, $\Omega = 2\pi/3$, and $\Omega = \pi$.
 - On the imaginary graph: -1 at $\Omega = \pi/2$.