
1

Michael Ernst, page 1

:KDW�������WHDFKHV�XV
DERXW�VRIWZDUH�HQJLQHHULQJ�

Michael Ernst
May 13, 2002

Michael Ernst, page 2

�������FRSLQJ�ZLWK�FRPSOH[LW\
• modularity
• hierarchy
• client-server
• layers
• virtualization
• coordinating sharing
• naming
• authentication, confidentiality
• redundancy
• transactions

Michael Ernst, page 3

�������&RSLQJ�ZLWK�FRPSOH[LW\

• abstraction: information hiding

• modularity: separation of concerns

• specification: expressing (only) non-hidden
details

• experience (sort of)

Michael Ernst, page 4

2XWOLQH

Why do systems fail?

How to avoid failure

Planning, failure, and iteration

Conclusion

Michael Ernst, page 5

7KH�VLQJOH�PRVW�LPSRUWDQW�
IDFWRU�IRU�D�VXFFHVVIXO�V\VWHP

• requirements
• design
• management
• scheduling
• implementation
• documentation: internal and external
• testing: validation and verification
• deployment
• maintenance Michael Ernst, page 6

%URRNV
V��WDU�SLW�

• You can pull any one paw out of the tar

2

Michael Ernst, page 7

&RPSOH[�IDLOXUHV

People and systems are amazingly resilient

They can tolerate single failures very well

Complex systems usually fail for complex
reasons
• each individual reason might be simple

Michael Ernst, page 8

$FFLGHQWV�LQ�1RUWK�$PHULFDQ�
0RXQWDLQHHULQJ�����

��������� 	�
����� ��� ������ ���
�������� ��� ������� ���������
���
���

Cornice collapse: unroped, inattention

Fall on waterfall ice: unroped, exceeding abilities, haste

Fall on rock: protection failure, inadequate protection

Stranded: exceeding abilities, bad weather

Fall on rock: inadequate protection, exceeding abilities

Fall on rock: placed no protection (leader), inadequate protection
(belayer), exceeding abilities, off route, inexperience

Slip on snow: unroped, inadequate equipment, exceeding abilities,
inexperience

Fall on rock: placed no protection, exceeding abilities

Fall on rock: climbing unroped, inadequate equipment, exceeding
abilities, inexperience

Michael Ernst, page 9

2XWOLQH

Why do systems fail?

How to avoid failure
• Avoid complex failures

• Apply 6.033's principles (appropriately)

• Avoid the seven deadly sins of system building

Planning, failure, and iteration

Conclusion

Michael Ernst, page 10

$YRLG�FRPSOH[�IDLOXUHV

Simplify
• Remove components that may fail (avoid

special-case code)

• Make the system easier to understand

• Abstract

Test
• Discover unknown failures

• Fix them to regain cushion against system
failure

Michael Ernst, page 11

$SSO\�WKH�LGHDV�RI������
DSSURSULDWHO\

Example: End-to-end principle
• subcomponents must work pretty well

• retries must be possible

Apply to Therac-25 radiation therapy machine
• most of the time, it works

• keep sending packets (patients)

• ignore any that get dropped

Michael Ernst, page 12

$YRLG�WKH�VHYHQ�GHDGO\�
VLQV�RI�D�V\VWHP�EXLOGHU

These are lessons of 6.033, 6.170, and the
school of hard knocks.

3

Michael Ernst, page 13

8QGHUVWDQG�WKH�JRDO��OXVW�

Carefully determine and specify requirements
• definitions may be the most important part

Understand the threat model

Abstract judiciously during this step

Michael Ernst, page 14

$FKLHYH�FRQFHSWXDO�
LQWHJULW\��JOXWWRQ\�

KISS: Keep It Simple, Stupid!

Full system may be necessarily complex
• Real-world requirements

• Non-ideal components

• Maybe the complexity is unnecessary after all

Ensure there is a conceptually simple core

Michael Ernst, page 15

%H�KXPEOH��SULGH�

Estimate accurately

Brooks: lack of time is the key impediment to
successful system construction

Software is harder to estimate
• little repetition of previous systems (this is good!)

Know your limits and those of your technology
• avoid the second system effect

Michael Ernst, page 16

%H�GLVFLSOLQHG��VORWK�

Software is (too) malleable
• it seems temptingly easy to change

Programmers need discipline.
• documentation, testing, etc.

On small projects, anything works!
• discipline still works best

Use good tools as well as good process

Michael Ernst, page 17

&RPPXQLFDWH��DQJHU�

Software engineering is about communication:
with the machine, users, colleagues, yourself

Why is the "mythical man-month" mythical?

Communication is greatly eased by modularity,
abstraction, and specification

Michael Ernst, page 18

'RQ
W�RYHU�RSWLPL]H��JUHHG�

Early optimization has uncertain benefits

Optimization has certain costs:
• increased complexity

• increased likelihood of errors

• loss of conceptual integrity

Humans are the scarce resource: optimize that

4

Michael Ernst, page 19

0DLQWDLQ�HIIHFWLYHO\��HQY\�

"Maintenance" is a misnomer
• fix defects

• adapt to changing environment

• adapt to changing requirements

Documentation matters

Debugging matters

Michael Ernst, page 20

2XWOLQH

Why do systems fail?

How to avoid failure

Planning, failure, and iteration

Conclusion

Michael Ernst, page 21

<RXU�ILUVW�WU\�ZLOO�EH�ZURQJ

Requirements are unknowable a priori

You don’t understand the details

Neither does the customer

Working through the details helps to clarify
(and change) one’s understanding

Thus, details will change

Fully detailed upfront design will make
mistakes

Michael Ernst, page 22

7KURZLQJ�RQH�DZD\��RU�QRW�

Brooks 1975: "Throw one away"

Brooks 1995:
• incorporate feedback in all parts of the process

• iterate back to the appropriate point

• always have a running system

• use an "agile process"

(See chapter 19. Brooks also changed his mind
about information hiding.)

Michael Ernst, page 23

([WUHPH�3URJUDPPLQJ��;3�

• Customer onsite

• Test first (optimize last)

• Pair programming

• Frequent integration

• Refactoring

• No planning for the future

• Measure progress

Works well on medium-size projects.
Michael Ernst, page 24

2XWOLQH

Why do systems fail?

How to avoid failure

Planning, failure, and iteration

Conclusion

5

Michael Ernst, page 25

:K\�GR�\RX�FDUH"

Course VI graduates, 6.033 and 6.170 are the
most valuable subjects they took at MIT.

Both are about coping with complexity via
• principles

• abstractions

• techniques

• tools

Michael Ernst, page 26

:KDW�WR�GR�QH[W

Remember these lessons

Be skeptical (but justify your skepticism)

Build good systems

Have fun!

