Last Lecture

- We learned how to share the network infrastructure between many connections/flows.
- We also learned about the implications of the sharing scheme (circuit or packet switching) on the service that the traffic receives.

This Lecture

- An Example: HTTP
- Layering (read 7.B)
- Link Layer (read 7.C)

Example: HTTP over the Internet Using TCP/IP and Ethernet

In the sending host

1. **Application-Programming Interface (API)**
 - Application requests TCP connection with "B"

2. **Transmission Control Protocol (TCP)**
 - Creates TCP "Connection setup" packet
 - TCP requests IP packet to be sent to "B"

In the sending host (2)

3. **Internet Protocol (IP)**
 - Creates IP packet with correct addresses.
 - IP requests packet to be sent to router.
In the sending host (3)

4. Link ("MAC" or Ethernet) Protocol
 - Creates MAC frame.
 - Wait for access to the line.
 - Send each bit of the frame.

 - IP Packet --
IP Data	IP Header
Encapsulation	
Ethernet FCS	Ethernet Data
Destination Address: MAC "R1" Source Address: MAC "A" Protocol = IP	
Ethernet Packet	

In Router R1

5. Link ("MAC" or Ethernet) Protocol
 - Accept MAC frame, check address and Frame Check Sequence (FCS) for bit errors.
 - Pass data to IP Protocol.

 - IP Packet --
IP Data	IP Header
Decapsulation	
Ethernet FCS	Ethernet Data
Destination Address: MAC "R2" Source Address: MAC "A" Protocol = IP	
Ethernet Packet	

In Router R1

6. Internet Protocol (IP)
 - Use IP destination address to decide where to send packet next ("next-hop routing").
 - Request Link Protocol to transmit packet.

 - IP Packet --
IP Data	IP Header
Encapsulation	
Ethernet FCS	Ethernet Data
Destination Address: IP "B" Source Address: IP "A" Protocol = TCP	
IP Packet	

Steps 8-15 are the same as before ...

In Router R5

16. Link ("MAC" or Ethernet) Protocol
 - Creates MAC frame.
 - Wait for access to the line.
 - Send each bit of the frame.

 - IP Packet --
IP Data	IP Header
Encapsulation	
Ethernet FCS	Ethernet Data
Destination Address: MAC "B" Source Address: MAC "R5" Protocol = IP	
Ethernet Packet	

In the receiving host

17. Link ("MAC" or Ethernet) Protocol
 - Accept MAC frame, check address and Frame Check Sequence (FCS) for bit errors.
 - Pass data to IP Protocol.

 - IP Packet --
IP Data	IP Header
Decapsulation	
Ethernet FCS	Ethernet Data
Destination Address: MAC "B" Source Address: MAC "R5" Protocol = IP	
Ethernet Packet	
In the receiving host (2)

18. Internet Protocol (IP)
- Verify IP address.
- Extract/decapsulate TCP packet from IP packet.
- Pass TCP packet to TCP Protocol.

<table>
<thead>
<tr>
<th>TCP Packet</th>
<th>TCP Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Packet</td>
<td>Destination Address: IP "B" Source Address: IP "A" Protocol = TCP</td>
</tr>
</tbody>
</table>

In the receiving host (3)

19. Transmission Control Protocol (TCP)
- Accepts TCP "Connection setup" packet
- Establishes connection by sending "Ack".

<table>
<thead>
<tr>
<th>TCP Packet</th>
<th>TCP Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type = Connection Setup Empty</td>
<td></td>
</tr>
</tbody>
</table>

20. Application-Programming Interface (API)
- Application receives request for TCP connection with "A".

This Lecture

- An Example: HTTP
- Layering
- Link Layer

Network Architecture

Problem
- Networks are complex (heterogeneity, distributed, delay, losses, reordering, ...)
- How do we organize a network implementation?

Solution
- To deal with complexity → use layering

Layering

- Layering is a particular form of abstraction
- The system is broken into a vertical hierarchy of logically distinct entities (layers)
- The service provided by one layer is based solely on the service provided by layer below

Layering: Our HTTP Example

HTTP Application
TCP Transport
IP Network
Ethernet Link
The 4-layer Internet model
Who Does What?

- **Link Layer:**
 - Delivers data from one end of a link to the other
- **Network Layer**
 - Routes packets and delivers them to their destination
- **Transport Layer**
 - Provides useful abstractions: stream, message
 - Can provide reliability
 - Can provide congestion control
- **Application Layer**
 - Your application: HTTP, FTP, etc.

Where are these layers?

- Link and network layers are implemented everywhere
- The end-to-end layer (i.e., transport and application) is implemented only at hosts

Encapsulation

- A layer can use only the service provided by the layer immediate below it
- Each layer may change and add a header to data packet

Interface

- Higher layer calls lower layer
 - e.g., `Link_Send(this_data, this_link)`
- Lower layer uses an up-call function to inform the higher layer of data arrival
 - e.g., `Network_Handle()`

Multiplexing in the Internet

- Many possible applications, transports, and link layers
- But they all use IP at the network layer

This Lecture

- An Example: HTTP
- Layering
 - Link Layer
Link Layer

Problem:
Deliver data from one end of the link to the other

Need to address:
- Bits ➔ Analog ➔ Bits
- Framing
- Errors
- Medium Access Control (The Ethernet Paper)

Sending bits
- Bits ➔ Analog ➔ Bits
- Receiver needs to detect the value of the bits
- Manchester Encoding: each bit is a transition
 - Having a transition in each bit allows the receiver to synchronize to the sender's clock

Framing
- Receiver needs to detect the beginning and the end of a frame
- Use special bit-patterns at the beginning and the end of the frame
- Bit stuffing is used to ensure that a special pattern does not occur in the data
 - E.g., pattern is 1111111 (7 ones)
 - Bit stuffing: whenever the sender sees a sequence of 6 ones in the data, it inserts a zero (reverse this operation at receiver)

Error Handling
- Detection:
 - Use error detection codes, which add some redundancy to allow detecting errors
- When errors are detected
 - Correction:
 - Some codes allow for correction
 - Retransmission:
 - Can have the link layer retransmit the frame (rare)
 - Discard:
 - Must link layers just discard the frame and rely on higher layers to retransmit

This Lecture
- To cope with the complexity, the network architecture is organized into layers
- The link layer delivers data between two machines that are directly connected using a link