L10: Protocols and Layering

6.033 Spring 2007

http://web.mit.edu/6.033

Slides from many folks

Plan for studying network systems

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharing and challenges</td>
<td>7.A</td>
</tr>
<tr>
<td>Layering</td>
<td>7.B+C</td>
</tr>
<tr>
<td>Routing</td>
<td>7.D</td>
</tr>
<tr>
<td>End-to-end reliability</td>
<td>7.E</td>
</tr>
<tr>
<td>Congestion control</td>
<td>7.F</td>
</tr>
<tr>
<td>Ethernet</td>
<td></td>
</tr>
<tr>
<td>End-to-end</td>
<td></td>
</tr>
<tr>
<td>Internet routing</td>
<td></td>
</tr>
<tr>
<td>Network file system</td>
<td></td>
</tr>
<tr>
<td>NATs</td>
<td></td>
</tr>
</tbody>
</table>

Last lecture: challenges

- **Economical:**
 - Universality
 - Topology, Sharing, Utilization
- **Organizational**
 - Routing, Addressing, Packets, Delay
 - Best-effort contract
- **Physical**
 - Errors, speed of light, wide-range of parameters

Network Design

Problem

- How do we organize design of a network?

Solution:

- layering of protocols

Layering of protocols

- Layering is a particular form of abstraction
- The system is broken into a vertical hierarchy of protocols
- The service provided by one layer is based solely on the service provided by layer below

Layering tools for nesting

- Each layer adds/ strips off its own header
- Each layer may split up higher-level data
- Each layer multiplexes multiple higher layers
- Each layer is (mostly) transparent to higher layers
Layering: The Internet

Multiplexing in the Internet

- Many applications, transports, and link protocols
- All use IP at the network layer

Where are these layers?

- Link and network layers are implemented everywhere
- The end-to-end layer (i.e., transport and application) is implemented only at hosts

Clever usages of layering

- Nesting layers to the extreme: tunneling
 - Run link layer over TCP (Virtual Private Network)
- Router uses TCP as transport for routing protocol (e.g., BGP)
- ...

Link Layer

Problem:
Deliver data from one end of the link to the other

Need to address:
- Bits
- Analog
- Framing
- Errors
- Medium Access Control (The Ethernet Paper)

Manchester encoding

- Each bit is a transition
- Allows the receiver to sync to the sender’s clock
Framing

- Receiver needs to detect the beginning and the end of a frame
- Use special bit-pattern to separate frames
 - E.g., pattern could be 1111111 (7 ones)
 - Bit stuffing is used to ensure that a special pattern does not occur in the data
 - If pattern is 1111111 Whenever the sender sees a sequence of 6 ones in the data, it inserts a zero (reverse this operation at receiver)

Error Handling

- Detection:
 - Use error detection codes, which add some redundancy to allow detecting errors
- When errors are detected
 - Correction:
 - Some codes allow for correction
 - Retransmission:
 - Can have the link layer retransmit the frame (rare)
 - Discard:
 - Most link layers just discard the frame and rely on higher layers to retransmit

This Lecture

- To cope with the complexity, the network architecture is organized into layers

- The link layer delivers data between two machines that are directly connected using a link